836 research outputs found

    On The Mobile Behavior of Solid 4^4He at High Temperatures

    Full text link
    We report studies of solid helium contained inside a torsional oscillator, at temperatures between 1.07K and 1.87K. We grew single crystals inside the oscillator using commercially pure 4^4He and 3^3He-4^4He mixtures containing 100 ppm 3^3He. Crystals were grown at constant temperature and pressure on the melting curve. At the end of the growth, the crystals were disordered, following which they partially decoupled from the oscillator. The fraction of the decoupled He mass was temperature and velocity dependent. Around 1K, the decoupled mass fraction for crystals grown from the mixture reached a limiting value of around 35%. In the case of crystals grown using commercially pure 4^4He at temperatures below 1.3K, this fraction was much smaller. This difference could possibly be associated with the roughening transition at the solid-liquid interface.Comment: 15 pages, 6 figure

    Quantitative analysis of electronic transport through weakly-coupled metal/organic interfaces

    Full text link
    Using single-crystal transistors, we have performed a systematic experimental study of electronic transport through oxidized copper/rubrene interfaces as a function of temperature and bias. We find that the measurements can be reproduced quantitatively in terms of the thermionic emission theory for Schottky diodes, if the effect of the bias-induced barrier lowering is included. Our analysis emphasizes the role of the coupling between metal and molecules, which in our devices is weak due to the presence of an oxide layer at the surface of the copper electrodes.Comment: 4 pages, 3 figure

    Global Production Increased by Spatial Heterogeneity in a Population Dynamics Model

    Get PDF
    Spatial and temporal heterogeneity are often described as important factors having a strong impact on biodiversity. The effect of heterogeneity is in most cases analyzed by the response of biotic interactions such as competition of predation. It may also modify intrinsic population properties such as growth rate. Most of the studies are theoretic since it is often difficult to manipulate spatial heterogeneity in practice. Despite the large number of studies dealing with this topics, it is still difficult to understand how the heterogeneity affects populations dynamics. On the basis of a very simple model, this paper aims to explicitly provide a simple mechanism which can explain why spatial heterogeneity may be a favorable factor for production.We consider a two patch model and a logistic growth is assumed on each patch. A general condition on the migration rates and the local subpopulation growth rates is provided under which the total carrying capacity is higher than the sum of the local carrying capacities, which is not intuitive. As we illustrate, this result is robust under stochastic perturbations

    Thermal History of Solid 4He Under Oscillation

    Full text link
    We have studied the thermal history of the resonant frequency of a torsional oscillator containing solid 4He. We find that the magnitude of the frequency shift that occurs below 100 mK is multivalued in the low temperature limit, with the exact value depending on how the state is prepared. This result can be qualitatively explained in terms of the motion and pinning of quantized vortices within the sample. Several aspects of the data are also consistent with the response of dislocation lines to oscillating stress fields imposed on the solid.Comment: 7 pages, 6 figure

    Charge-Density-Wave Ordering in the Metal-Insulator Transition Compound PrRu4P12

    Get PDF
    X-ray and electron diffraction measurements on the metal-insulator (M-I) transition compound PrRu4_4P12_{12} have revealed the emergence of a periodic ordering of charge density around the Pr atoms. It is found that the ordering is associated with the onset of a low temperature insulator phase. These conclusions are supported by the facts that the space group of the crystal structure transforms from Im3ˉ\bar{3} to Pm3ˉ\bar{3} below the M-I transition temperature and also that the temperature dependence of the superlattice peaks in the insulator phase follows the squared BCS function. The M-I transition could be originated from the perfect nesting of the Fermi surface and/or the instability of the ff electrons.Comment: 4 pages, 5 figures, Phys. Rev. B (2004) (in press

    Electromagnetic dissociation of relativistic 8^8B nuclei in nuclear track emulsion

    Full text link
    Experimental data on fragmentation channels in peripheral interactions of 8^8B nuclei in nuclear track emulsions are presented. A detailed analysis made it possible to justify selections of events of the electromagnetic-dissociation process 8^8B →7\to^7Be + \emph{p} and to estimate its cross section. Events of 10^{10}C peripheral dissociation that were observed in the same exposure are described.Comment: 12 pages, 10 figures, 4 tables, Published in Phys.Atom.Nucl.72:690-701,200

    BCC vs. HCP - The Effect of Crystal Symmetry on the High Temperature Mobility of Solid 4^4He

    Full text link
    We report results of torsional oscillator (TO) experiments on solid 4^4He at temperatures above 1K. We have previously found that single crystals, once disordered, show some mobility (decoupled mass) even at these rather high temperatures. The decoupled mass fraction with single crystals is typically 20- 30%. In the present work we performed similar measurements on polycrystalline solid samples. The decoupled mass with polycrystals is much smaller, ∌\sim 1%, similar to what is observed by other groups. In particular, we compared the properties of samples grown with the TO's rotation axis at different orientations with respect to gravity. We found that the decoupled mass fraction of bcc samples is independent of the angle between the rotation axis and gravity. In contrast, hcp samples showed a significant difference in the fraction of decoupled mass as the angle between the rotation axis and gravity was varied between zero and 85 degrees. Dislocation dynamics in the solid offers one possible explanation of this anisotropy.Comment: 10 pages, 5 figures, to appear in Journal of Low Temperature Physics - special issue on Supersolidit

    Low-energy cross section of the 7Be(p,g)8B solar fusion reaction from Coulomb dissociation of 8B

    Full text link
    Final results from an exclusive measurement of the Coulomb breakup of 8B into 7Be+p at 254 A MeV are reported. Energy-differential Coulomb-breakup cross sections are analyzed using a potential model of 8B and first-order perturbation theory. The deduced astrophysical S_17 factors are in good agreement with the most recent direct 7Be(p,gamma)8B measurements and follow closely the energy dependence predicted by the cluster-model description of 8B by Descouvemont. We extract a zero-energy S_17 factor of 20.6 +- 0.8 (stat) +- 1.2 (syst) eV b.Comment: 14 pages including 16 figures, LaTeX, accepted for publication in Physical Review C. Minor changes in text and layou

    Continuous-Time Quantum Monte Carlo Approach to Singlet-Triplet Kondo Systems

    Full text link
    Dynamical properties are studied numerically for a variant of the Kondo model with singlet and triplet crystalline electric field (CEF) levels where Kondo and CEF singlets compete for the ground state. Using the continuous-time quantum Monte Carlo method, we derive the tt-matrix of conduction electrons and dynamical susceptibilities of local electrons without encountering the negative sign problem. When the CEF splitting is comparable to the Kondo temperature, the dynamical response has only a quasi-elastic peak. Nevertheless, the local single-particle spectrum shows an energy gap in strong contrast with the ordinary Kondo model.Comment: 9 pages, 10 figure

    Low Temperature Shear Modulus Changes in Solid 4-He and Connection to Supersolidity

    Full text link
    Superfluidity, liquid flow without friction, is familiar in helium. The first evidence for "supersolidity", its analogue in quantum solids, came from recent torsional oscillator (TO) measurements involving 4-He. At temperatures below 200 mK, TO frequencies increased, suggesting that some of the solid decoupled from the oscillator. This behavior has been replicated by several groups but solid 4-He does not respond to pressure differences and persistent currents and other signatures of superflow have not been seen. Both experiments and theory indicate that defects are involved. These should also affect the solid's mechanical behavior and so we have measured the shear modulus of solid 4-He at low frequencies and strains. We observe large increases below 200 mK, with the same dependence on measurement amplitude, 3-He impurity concentration and annealing as the decoupling seen in TO experiments. This unusual elastic behavior is explained in terms of a dislocation network which is pinned by 3-He at the lowest temperatures but becomes mobile above 100 mK. The frequency changes in TO experiments appear to be related to the motion of these dislocations, perhaps by disrupting a possible supersolid state.Comment: 18 pages, 4 figues, Supplementary Informatio
    • 

    corecore