2,091 research outputs found

    Difference frequency generation by quasi-phase matching in periodically intermixed semiconductor superlattice waveguides

    Get PDF
    Wavelength conversion by difference frequency generation is demonstrated in domain-disordered quasi-phase-matched waveguides. The waveguide structure consisted of a GaAs/AlGaAs superlattice core that was periodically intermixed by ion implantation. For quasi-phase-matching periods of 3.0–3.8 μm, degeneracy pump wavelengths were found by second-harmonic generation experiments for fundamental wavelengths between 1520 and 1620 nm in both type-I and type-II configurations. In the difference frequency generation experiments, output powers up to 8.7 nW were generated for the type-I phase matching interaction and 1.9 nW for the type-II interaction. The conversion bandwidth was measured to be over 100 nm covering the C, L, and U optical communications bands, which agrees with predictions

    QSO hosts and environments at z=0.9 to 4.2: JHK images with adaptive optics

    Get PDF
    We have observed nine QSOs with redshifts 0.85 to 4.16 at near-IR wavelengths with the adaptive optics bonnette of the Canada-France-Hawaii telescope. Exposure times ranged from 1500 to 24000s (mostly near 7000s) in J, H, or K bands, with pixels 0.035 arcsec on the sky. The FWHM of the co-added images at the location of the quasars are typically 0.16 arcsec. Including another QSO published previously, we find associated QSO structure in at least eight of ten objects, including the QSO at z = 4.16. The structures seen in all cases include long faint features which appear to be tidal tails. In four cases we have also resolved the QSO host galaxy, but find them to be smooth and symmetrical: future PSF removal may expand this result. Including one object previously reported, of the nine objects with more extended structure, five are radio-loud, and all but one of these appear to be in a dense small group of compact galaxy companions. The radio-quiet objects do not occupy the same dense environments, as seen in the NIR. In this small sample we do not find any apparent trends of these properties with redshift, over the range 0.8 < z < 2.4. The colors of the host galaxies and companions are consistent with young stellar populations at the QSO redshift. Our observations suggest that adaptive optic observations in the visible region will exhibit luminous signatures of the substantial star-formation activity that must be occurring.Comment: 22 pages including 10 tables, plus 11 figures. To appear in A

    Measurement properties of the UK-English version of the Pediatric Quality of Life Inventory™ 4.0 (PedsQL™) generic core scales

    Get PDF
    Background Health related quality of life (HRQL) has been recognised as an important paediatric outcome measurement. One of the more promising measures to emerge in recent years is the Pediatric Quality Of Life Inventory (PedsQL™), developed in the US. Advantages of the PedsQL™ include brevity, availability of age appropriate versions and parallel forms for child and parent. This study developed a UK-English version of PedsQL™ generic module and assessed its performance in a group of UK children and their parents. Methods PedsQL™ was translated to UK-English. The psychometric properties of the UK version were then tested following administration to 1399 children and 970 of their parents. The sample included healthy children, children diagnosed with asthma, diabetes or inflammatory bowel disease and children in remission from cancer. Results Psychometric properties were similar to those reported for the original PedsQL™. Internal reliability exceeded 0.70 for all proxy and self-report sub-scales. Discriminant validity was established for proxy and self-report with higher HRQL being reported for healthy children than those with health problems. Sex differences were noted on the emotional functioning subscale, with females reporting lower HRQL than males. Proxy and self-report correlation was higher for children with health problems than for healthy children. Conclusion The UK-English version of PedsQL™ performed as well as the original PedsQL™ and is recommended for assessment of paediatric HRQL in the UK

    A single Streptomyces symbiont makes multiple antifungals to support the fungus farming ant Acromyrmex octospinosus

    Get PDF
    Attine ants are dependent on a cultivated fungus for food and use antibiotics produced by symbiotic Actinobacteria as weedkillers in their fungus gardens. Actinobacterial species belonging to the genera Pseudonocardia, Streptomyces and Amycolatopsis have been isolated from attine ant nests and shown to confer protection against a range of microfungal weeds. In previous work on the higher attine Acromyrmex octospinosus we isolated a Streptomyces strain that produces candicidin, consistent with another report that attine ants use Streptomyces-produced candicidin in their fungiculture. Here we report the genome analysis of this Streptomyces strain and identify multiple antibiotic biosynthetic pathways. We demonstrate, using gene disruptions and mass spectrometry, that this single strain has the capacity to make candicidin and multiple antimycin compounds. Although antimycins have been known for > 60 years we report the sequence of the biosynthetic gene cluster for the first time. Crucially, disrupting the candicidin and antimycin gene clusters in the same strain had no effect on bioactivity against a co-evolved nest pathogen called Escovopsis that has been identified in similar to 30% of attine ant nests. Since the Streptomyces strain has strong bioactivity against Escovopsis we conclude that it must make additional antifungal(s) to inhibit Escovopsis. However, candicidin and antimycins likely offer protection against other microfungal weeds that infect the attine fungal gardens. Thus, we propose that the selection of this biosynthetically prolific strain from the natural environment provides A. octospinosus with broad spectrum activity against Escovopsis and other microfungal weeds.Publisher PDFPeer reviewe

    Chemical warfare between fungus-growing ants and their pathogens

    Get PDF
    Fungus-growing attine ants are under constant threat from fungal pathogens such as the specialized mycoparasite Escovopsis, which uses combined physical and chemical attack strategies to prey on the fungal gardens of the ants. In defence, some species assemble protective microbiomes on their exoskeletons that contain antimicrobial-producing Actinobacteria. Underlying this network of mutualistic and antagonistic interactions are an array of chemical signals. Escovopsis weberi produces the shearinine terpene-indole alkaloids, which affect ant behaviour, diketopiperazines to combat defensive bacteria, and other small molecules that inhibit the fungal cultivar. Pseudonocardia and Streptomyces mutualist bacteria produce depsipeptide and polyene macrolide antifungals active against Escovopsis spp. The ant nest metabolome is further complicated by competition between defensive bacteria, which produce antibacterials active against even closely related species

    Low temperature specific heat and possible gap to magnetic excitations in the Heisenberg pyrochlore antiferromagnet Gd2Sn207

    Full text link
    The Gd2Sn2O7 pyrochlore Heisenberg antiferromagnet displays a phase transition to a four sublattice Neel ordered state at a temperature near 1 K. Despite the seemingly conventional nature of the ordered state, the specific heat has been found to be described in the temperature range 350-800 mK by an anomalous T-squared power law. A similar temperature dependence has also been reported for Gd2Ti2O7, another pyrochlore Heisenberg material. Such anomalous T-squared behavior in Cv has been argued to be correlated to an unusual energy-dependence of the density of states which also seemingly manifests itself in low-temperature spin fluctuations found in muon spin relaxation experiments. In this paper, we report calculations of Cv that consider spin wave like excitations out of the Neel order observed in Gd2Sn2O7 and argue that the parametric T-squared behavior does not reflect the true low-energy excitations of Gd2Sn2O7. Rather, we find that the low-energy excitations of this material are antiferromagnetic magnons gapped by single-ion and dipolar anisotropy effects, and that the lowest temperature of 350 mK considered in previous specific heat measurements accidentally happens to coincide with a crossover temperature below which magnons become thermally activated and Cv takes an exponential form. We argue that further specific heat measurements that extend down to at least 100 mK are required in order to ascribe an unconventional description of magnetic excitations out of the ground state of Gd2Sn2O7 or to invalidate the standard picture of gapped excitations proposed herein.Comment: 12 pages, 13 figures; shortened introduction and added 1 figur

    Dissolution of the Disparate:Co-ordinate Regulation in Antibiotic Biosynthesis

    Get PDF
    Discovering new antibiotics is vital to combat the growing threat of antimicrobial resistance. Most currently used antibiotics originate from the natural products of actinomycete bacteria, particularly Streptomyces species, that were discovered over 60 years ago. However, genome sequencing has revealed that most antibiotic-producing microorganisms encode many more natural products than previously thought. Biosynthesis of these natural products is tightly regulated by global and cluster situated regulators (CSRs), most of which respond to unknown environmental stimuli, and this likely explains why many biosynthetic gene clusters (BGCs) are not expressed under laboratory conditions. One approach towards novel natural product discovery is to awaken these cryptic BGCs by re-wiring the regulatory control mechanism(s). Most CSRs bind intergenic regions of DNA in their own BGC to control compound biosynthesis, but some CSRs can control the biosynthesis of multiple natural products by binding to several different BGCs. These cross-cluster regulators present an opportunity for natural product discovery, as the expression of multiple BGCs can be affected through the manipulation of a single regulator. This review describes examples of these different mechanisms, including specific examples of cross-cluster regulation, and assesses the impact that this knowledge may have on the discovery of novel natural products

    Tuning Low Temperature Physical Properties of CeNiGe3_{3} by Magnetic Field

    Full text link
    We have studied the thermal, magnetic, and electrical properties of the ternary intermetallic system CeNiGe3_{3} by means of specific heat, magnetization, and resistivity measurements. The specific heat data, together with the anisotropic magnetic susceptibility, was analyzed on the basis of the point charge model of crystalline electric field. The JJ\,=\,5/2 multiplet of the Ce3+^{3+} is split by the crystalline electric field (CEF) into three Kramers doublets, where the second and third doublet are separated from the first (ground state) doublet by Δ1\Delta_{1} \sim 100\,K and Δ2\Delta_{2} \sim 170\,K, respectively. In zero field CeNiGe3_{3} exhibits an antiferromangeic order below TNT_{N} = 5.0\,K. For \textbf{H}\,\parallel\,\textbf{a} two metamagnetic transitions are clearly evidenced between 2\,\sim\,4\,K from the magnetization isotherm and extended down to 0.4\,K from the magnetoresistance measurements. For \textbf{H}\,\parallel\,\textbf{a}, TNT_{N} shifts to lower temperature as magnetic field increases, and ultimately disappears at HcH_{c} \sim 32.5\,kOe. For H>HcH\,>\,H_{c}, the electrical resistivity shows the quadratic temperature dependence (Δρ=AT2\Delta\rho = A T^{2}). For HHcH \gg H_{c}, an unconventional TnT^{n}-dependence of Δρ\Delta\rho with n>2n > 2 emerges, the exponent nn becomes larger as magnetic field increases. Although the antiferromagnetic phase transition temperature in CeNiGe3_{3} can be continuously suppressed to zero, it provides an example of field tuning that does not match current simple models of Quantum criticality.Comment: accepted PR
    corecore