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Abstract

Attine ants are dependent on a cultivated fungus for food and use antibiotics produced by symbiotic Actinobacteria as
weedkillers in their fungus gardens. Actinobacterial species belonging to the genera Pseudonocardia, Streptomyces and
Amycolatopsis have been isolated from attine ant nests and shown to confer protection against a range of microfungal
weeds. In previous work on the higher attine Acromyrmex octospinosus we isolated a Streptomyces strain that produces
candicidin, consistent with another report that attine ants use Streptomyces-produced candicidin in their fungiculture. Here
we report the genome analysis of this Streptomyces strain and identify multiple antibiotic biosynthetic pathways. We
demonstrate, using gene disruptions and mass spectrometry, that this single strain has the capacity to make candicidin and
multiple antimycin compounds. Although antimycins have been known for .60 years we report the sequence of the
biosynthetic gene cluster for the first time. Crucially, disrupting the candicidin and antimycin gene clusters in the same
strain had no effect on bioactivity against a co-evolved nest pathogen called Escovopsis that has been identified in ,30% of
attine ant nests. Since the Streptomyces strain has strong bioactivity against Escovopsis we conclude that it must make
additional antifungal(s) to inhibit Escovopsis. However, candicidin and antimycins likely offer protection against other
microfungal weeds that infect the attine fungal gardens. Thus, we propose that the selection of this biosynthetically prolific
strain from the natural environment provides A. octospinosus with broad spectrum activity against Escovopsis and other
microfungal weeds.
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Introduction

Insect fungiculture has been best studied in the attine ants

(subfamily Myrmicinae, tribe Attini) whose common ancestor is

estimated to have evolved agriculture around 50 million years

ago [1]. Attine ants are so dependent on the cultivation of fungus

that when a daughter queen leaves to found a new nest she

carries a piece of the cultivar fungus in her mouth in order to

establish a culture of that fungus in her new nest [1]. Intriguingly,

attine ants have also evolved a mutualism with Actinobacteria

that produce antibiotics that the ants use as weedkillers to keep

their fungal gardens free of other microbes [2,3,4]. The

relationship between Actinobacteria, fungal cultivar and attine

ant has been intensely studied in the branch of higher attines

known as the leaf-cutting ants (genera Atta and Acromyrmex) which

harvest fresh vegetation to feed to their highly specialised fungal

cultivar, Leucoagaricus gongylophorus [1]. The fungus has evolved

lipid and carbohydrate rich hyphae known as gongylidia which

the ants harvest and use as food [5]. Pathogens of the fungal

garden, most notably fungi of the genus Escovopsis, if left

unchecked, can destroy a fungal garden and lead to the collapse

of the colony within weeks [6,7].

Two overlapping but conflicting theories have been put

forward to explain the evolution of mutualism between attine

ants and Actinobacteria. The first suggests co-evolution of attine

ants and Actinobacteria belonging to the genus Pseudonocardia.

This theory suggests that the fungus garden pathogen Escovopsis

has also co-evolved and that Pseudonocardia and Escovopsis are

engaged in an evolutionary arms race in which the bacteria

evolve compounds that specifically target Escovopsis but do not

inhibit the growth of the fungal cultivar [5]. The second model

suggests that attine ants select antifungal-producing Actinobac-

teria from the environment and is consistent with the identifica-

tion of additional Actinobacterial genera on leaf-cutting ants,

including Streptomyces and Amycolatopsis species [3,4,8,9]. However,

these theories are not mutually exclusive and evidence suggests

attine ants co-evolve with Pseudonocardia bacteria and still select

other antifungal producing bacteria from the soil, perhaps to

prevent evolution of resistance in the fungal pathogens [9,10].

Indeed, there is good evidence, both direct and indirect, that leaf-
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cutting ants use multiple antifungals produced by multiple

Actinobacteria during the cultivation of their fungal gardens

suggesting that both models do apply, at least in the higher attine

genus Acromyrmex [3,11]. Recent work demonstrated that

Acromyrmex octospinosus are associated with a Pseudonocardia strain

that may have co-evolved and a Streptomyces strain that was most

likely acquired from the environment relatively recently [9].

One intriguing question that still needs to be addressed in the

environmental recruitment model concerns how the ants select

beneficial bacteria. Actinobacteria are well known producers of

useful secondary metabolites, including around 60% of all known

antibiotics [12] and it seems likely that this production capability is

key to their success as mutualists. Clearly the production of

antifungals makes them useful to the ants and we hypothesise that

production of multiple antifungals with different targets by single

Actinobacterial species would make them more attractive to the

ants as mutualists. In this work we carry out a more in depth

analysis of the antifungals made by one of the strains associated

with the leaf-cutting ant A. octospinosus, a species of Streptomyces

which has been proposed to support fungus growing ants through

production of the polyene antifungal candicidin [4,9]. We report

the genome sequence and analysis of this strain indicating its

capacity to make numerous antibiotics, including at least three

antifungal compounds. Curiously, this strain makes both of the

antifungals that have been reported in the Streptomyces attine ant

mutualists but neither the candicidin or antimycins are obligatory

for the inhibition of the co-evolved nest pathogen E. weberi. We

propose that additional and as yet unknown antifungal(s) made by

this strain specifically target Escovopsis and that candicidin and

antimycins offer protection against other microfungal weeds. We

propose that the ability of this single species to make multiple

antifungal compounds makes it an attractive acquisition for the

ants and their fungiculture.

Results

Genome sequencing and analysis
To determine the antibiotic biosynthetic capability of Streptomy-

ces S4 a combination of shotgun, 3 kbp and 8 kbp paired end

libraries were constructed and 454 pyrosequenced to generate

.335 Mbp of sequence that was assembled into 12 scaffolds

containing 211 large contigs. The genome consists of one

,7.5 Mbp linear chromosome, which is within the size range

reported for genomes of other sequenced streptomycetes, as well as

one linear plasmid (,180 kbp) and one circular plasmid (,2 kbp)

[13]. The Streptomyces S4 genome was annotated by a combination

of manual and automated methods and multiple biosynthetic gene

clusters predicted to produce secondary metabolites were identi-

fied. Table 1 summarizes characteristics of predicted natural

product biosynthetic gene clusters in Streptomyces S4. As expected

based on our previous work, the Streptomyces S4 genome contained

a candicidin biosynthetic gene cluster that shares 98% nucleotide

sequence identity with the candicidin biosynthetic gene cluster

from Streptomyces sp. FR-008 [14]. Other biosynthetic gene clusters

of note are a non-ribosomal peptide synthetase (NRPS) biosyn-

thetic gene cluster that is predicted to direct the biosynthesis of an

antibacterial similar to mannopeptimycin, as well as a NRPS

biosynthetic gene cluster whose predicted product is a gramicidin-

like antibacterial. We note these antibacterials could be useful in

eliminating competition during colonisation of the ant cuticle.

Streptomyces S4 also contains a type II polyketide synthase (PKS)

biosynthetic gene cluster that shares 100% nucleotide identity to

that of the fredericamycin biosynthetic gene cluster characterized

in S. griseus [15]. Fredericamycin is mostly known for its antitumor

properties [16]. Additionally, there are six functionally unassigned

biosynthetic gene clusters (three NRPS and three hybrid NRPS/

PKS) that are not similar to gene clusters with known products. It

Table 1. Putative secondary metabolites encoded by Streptomyces S4.

Predicted biosynthetic system Genome coordinates
Predicted metabolite or close
relative Biological properties

Hopene / squalene synthase scaffold08: 588141–598581 Hopanoids Membrane stabilizers

NRPS-independent siderophore synthetase scaffold05: 959198–972403 Desferrioxamine Siderophore

NRPS-independent siderophore synthetase scaffold08: 1448607–1457963 Unknown Unknown

Ectoine synthase scaffold05: 68880–72152 Ectoine Osmolyte

Phytoene / polyprenyl synthase scaffold06: 410147–419826 Carotenoids Pigment

Terpene synthase scaffold08: 1719586–1721871 Geosmin Unknown

Type III PKS scaffold06: 295706–300701 1,3,6,8-tetrahydroxynaphthalene Pigment

Type I PKS scaffold06: 115150–253654 Candicidin Antifungal

Type I PKS / Type III PKS scaffold05:1001127–1064995 Kendomycin Anticancer

Type II PKS scaffold08: 3878554–3911349 Fredericamycin Anticancer

Hybrid NRPS / PKS scaffold06: 81953–106578 Unknown Unknown

Hybrid NRPS / PKS scaffold06: 7264–45109 Unknown Unknown

Hybrid NRPS / PKS scaffold08: 503983–520001 Unknown Unknown

NRPS scaffold08: 4240081–4309220 Gramicidin Antibacterial

NRPS scaffold08: 3002155–3042863 Mannopeptimycin Antibacterial

NRPS scaffold06: 65083–81878 Unknown Unknown

NRPS scaffold08: 276268–301035 Unknown Unknown

NRPS scaffold08: 3930113–3950474 Unknown Unknown

NRPS, non-ribosomal peptide synthetase, PKS, polyketide synthase.
doi:10.1371/journal.pone.0022028.t001
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is likely that at least some these clusters encode secondary

metabolites with antibacterial or antifungal activity.

Mutagenesis of the candicidin biosynthetic gene cluster
does not abolish antifungal activity

Evidence that candicidin is not the sole antifungal generated by

Streptomyces S4 is demonstrated by the retained antifungal activity

of a mutant strain deficient in the biosynthesis of this compound.

The candicidin biosynthetic gene cluster was disrupted by deletion

of the polyketide synthase gene, fscC, which encodes the candicidin

biosynthetic modules 6–10 [14]. LC-MS analysis of butanol-

extracted culture supernatants from the wild-type strain revealed a

molecular ion (m/z 1109.6) consistent with that of candicidin D

and showed characteristic polyene absorption bands in its UV

spectrum, with absorbance maxima at 360, 380, 403 nm (Fig. 1).

As predicted, the molecular ion m/z 1109.6 was not detected in

the DfscC mutant, indicating that candicidin production is

abolished in this strain (Fig. 1). Bioassays of the isogenic wild-

type and DfscC strains against C. albicans and the nest pathogen

Escovopsis weberi demonstrated that loss of candicidin has no effect

on the antifungal bioactivity of Streptomyces S4 (Fig. 2). This result

suggests that Streptomyces S4 makes at least one additional

antifungal compound that has not been identified previously,

most likely encoded by one of the other biosynthetic gene clusters

identified in this work.

Identification of the antimycin biosynthetic gene cluster
While this work was in progress another group reported that

antimycins are produced by a number of the other Streptomyces

strains associated with attine ant nests [17]. Antimycins inhibit the

respiratory chain and are known to have antifungal activity. We

investigated whether Streptomyces S4 is making antimycin com-

pounds in addition to candicidin and hypothesised that antimycins

could potentially account for the retained bioactivity against

Escovopsis observed for the Streptomyces S4 fscC mutant. LC-MS

analysis of culture supernatants of the wild-type strain identified

eight compounds with m/z that match those reported for

antimycins A1–A4 (Fig. 3). To determine if any of the eight

compounds could be antimycins, we co-injected commercially

available antimycin standards A1–A4 with our wild-type extract,

which revealed that four of the eight compounds possess the same

retention time as the antimycin A1–A4 standards (Fig. 3). Four of

the eight S4 compounds were identical to the commercially

available antimycin standards A1–A4 both in terms of UV

absorbance profile and LC retention time. Whilst the remaining

four S4 compounds possess the same UV absorbance character-

istics as the antimycin standards (Fig. S1), and the same m/z parent

ions as those of the standards, they exhibit different retention times

(Fig. 3); further experiments are being carried out to identify and

characterize these four previously unreported compounds.

To our knowledge the gene cluster that encodes the antimycin

biosynthetic pathway has not been identified, despite these

compounds first being isolated over 60 years ago [18]. The

structure of antimycin suggests that it may be synthesized, at least

in part, by an NRPS, and that threonine may be utilized as a

substrate (Fig. 3). The Basic Local Alignment Search Tool [19]

revealed a region of the Streptomyces S4 genome with 57% amino

acid sequence identity to the threonine adenylation domain from

the daptomycin biosynthetic protein, DptA [20]. This region of

homology enabled us to identify a hybrid NRPS/PKS biosyn-

thetic gene cluster that displays significant amino acid identity to

a hybrid NRPS/PKS biosynthetic gene cluster present in both

S. albus and S. ambofaciens and potentially encodes for the

biosynthesis of antimycins (Fig. 4). Table 2 displays the proposed

functions of proteins present in the hybrid NRPS/PKS cluster. In

order to determine if this biosynthetic gene cluster can direct the

production of antimycin, we disrupted the hybrid NRPS/PKS

gene, antC and assessed antifungal activity against C. albicans in a

plate bioassay. The DantC mutant displayed dramatically reduced

antifungal activity against C. albicans compared to that of the wild-

type strain (Fig. 2). This strongly suggested that the product of

this cluster was an antifungal compound and is consistent with

the hypothesis that this cluster could potentially mediate the

biosynthesis of antimycins, compounds known to possess strong

antifungal activity against C. albicans (Fig. 2). Confirmation that

the hybrid NRPS/PKS encoded by Streptomyces S4 directs the

biosynthesis of antimycins was obtained by comparing the LC-

MS profiles of the wild-type, DfscC and DantC mutant strains.

Extracted ion chromatograms revealed that the DantC mutant

does not produce the eight antimycins and that the DfscC mutant

retained the ability to produce these antimycin compounds

(Fig. 3).

Figure 1. Deletion of the candicidin biosynthetic gene, fscC
abolishes production of candicidin. LC-MS was used to analyze
supernatant from Streptomyces S4 wild-type and S4 DfscC. The
extracted ion chromatogram for candicidin (m/z 1109.6) is shown and
confirmed that only S4 wild-type and not the DfscC mutant produced
candicidin. The UV visible spectra for the peak at RT 5.15 min displays
absorption characteristics consistent with polyene compounds is also
shown (bottom).
doi:10.1371/journal.pone.0022028.g001
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A Streptomyces S4 mutant which cannot make candicidin
or antimycins still has antifungal activity against E. weberi

Our bioassays against E. weberi with the DfscC and DantC mutant

strains of Streptomyces S4 did not show a reduction in bioactivity

against this nest parasite indicating that key antifungal com-

pound(s) affording protection against the natural fungal pathogen

still remain to be identified (Fig. 2). To determine whether

additional antifungals are made by Streptomyces S4 we generated a

new mutant in which the fscC and antC genes were disrupted in the

same strain and assessed the bioactivity of this strain against C.

albicans and E. weberi. As we predicted, the antifungal activity of the

DfscC DantC double mutant against E. weberi was comparable to

that of the wild-type strain, confirming that additional antifungal

compound(s) made by Streptomyces S4 account for the majority of

the antifungal activity observed against E. weberi in vitro. The

additional antifungal(s) may be encoded by one of the five

functionally unassigned biosynthetic gene clusters identified in our

genome analysis (Table 1) or by a gene cluster not identified in our

analysis.

Discussion

Although the attine ant-fungal mutualism has been studied for

more than a century, the antibiotic-producing Actinobacterial

mutualists were only discovered ,15 years ago and it is only very

recently that scientists have started to address the nature of the

antibiotics being produced by these bacteria [2,4,9,17]. It has been

hypothesised, although not proven, that these antibiotics are used

by the ants to kill off contaminated parts of the garden and / or to

suppress the growth of fungal pathogens including co-evolved

pathogens in the genus Escovopsis and many other microfungal

weeds [6,7]. Recent studies have shown that strains belonging to

two key genera are typically associated with attine ants, species of

Pseudonocardia, which have been suggested to have co-evolved with

the ants and to be transmitted vertically by the queens, and species

of Streptomyces which have been suggested to be more recently

acquired from the environment [3,4,8,9]. Two antifungals have

been identified from proposed mutualist species in each genus and

both inhibit the nest pathogen Escovopsis in vitro. Pseudonocardia

associated with the lower attine A. dentigerum makes dentigerumycin

and Pseudonocardia associated with the higher attine A. octospinosus

makes nystatin P1 [2,9]. Streptomyces mutualists associated with

higher attines of the genus Acromyrmex are known to produce the

well-known antifungals candicidin and antimycins and it has been

suggested that these compounds account for the bioactivity of this

Streptomyces strain against Escovopsis [4,9,17]. To date almost all of

this work has been carried out through isolation and mass

spectrometry analysis of the antifungal compounds, although we

used genome scanning of a Pseudonocardia mutualist to identify a

nystatin-like biosynthetic gene cluster and its product which we

named nystatin P1 [9].

In this work we have undertaken the first in-depth genome

sequence analysis of a proposed attine ant mutualist, in this case a

candicidin-producing Streptomyces strain isolated from A. octospinosus

garden worker ants collected in Trinidad [9]. Genome sequencing

and analysis identified 17 gene clusters that are predicted to

encode for known or unknown secondary metabolites, including

the known gene cluster for candicidin biosynthesis. Following the

discovery of antimycin production by Streptomyces strains isolated

from attine ants in a separate study [17] we identified a gene

cluster encoding a pathway that is consistent with antimycin

biosynthesis. Surprisingly, despite antimycins first being isolated

and characterised .60 years ago the antimycin biosynthetic

pathway was not known. We identified eight compounds which we

assigned as antimycins and then identified and disrupted the

hybrid NRPS/PKS gene cluster which we predicted to encode

antimycin biosynthesis. The production of the eight antimycin

compounds was abolished in the mutant strain providing strong

evidence that this gene cluster does indeed encode the antimycin

biosynthetic pathway.

In bioassays of the wild-type Streptomyces S4 strain alongside

strains which cannot make candicidin, antimycins or either of

these antifungal compounds we found that whilst antimycin- and

candicidin-deficient strains had reduced activity against the

Figure 2. Antifungal bioactivity of the non-antifungal-producing strain Streptomyces lividans, Streptomyces S4 wild-type and mutant
strains. Bioassays with Streptomyces lividans, S4 wild-type, S4 DfscC, S4 DantC and S4 DfscC DantC against Escovopsis weberi (top panel) and
C. albicans (bottom panel) demonstrate that deletion of fscC does not abolish antifungal activity and that deletion of antC only reduces antifungal
activity against C. albicans and not E. weberi. The S4 DfscC DantC double mutant does not display reduced antifungal activity against E. weberi
suggesting the presence of an additional antifungal compound that is responsible for the phenotype observed during in vitro bioassays.
doi:10.1371/journal.pone.0022028.g002
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human pathogen C. albicans their activity against the nest pathogen

E. weberi was unaltered. This is curious as the Streptomyces S4 strain

and E. weberi are thought to have co-evolved in this mutualism

[21]. This suggests that despite previous research demonstrating

that purified candicidin and antimycin preparations inhibit the

growth of Escovopsis in vitro neither compound is responsible for

the activity observed in bioassays where Streptomyces S4 is

challenged with E. weberi. We conclude that these compounds

potentially inhibit the growth of other microfungal weeds found in

the ant-fungus gardens while additional and currently unknown

antifungal(s) produced by Streptomyces S4 have stronger activity

against Escovopsis. We also propose that the combination of

antifungals produced by this single Streptomyces strain coupled with

the antifungal(s) produced by a Pseudonocardia strain isolated from

the same nest provides a broad spectrum of antifungal activity that

is used by the ants to farm their fungus. Furthermore, the

antibacterials made by Streptomyces S4 potentially help it to

outcompete other bacteria for the ant host.

Our data suggest that the Streptomyces strains isolated by other

researchers from attine ants are likely to make additional

antifungals since they appear to be closely related to Streptomyces

S4. It will be important to re-examine the biosynthetic capability

of these strains in order to fully understand the chemical basis of

their interactions with attine ants and their fungal cultivar. This

reflects a common problem in the field of natural product

antibiotic discovery, in which the reisolation of known compounds

hampers the discovery of new antibiotics. The approach we have

outlined here is time consuming and technically challenging, but it

is perhaps the only way to determine the entire biosynthetic

capability of an antibiotic-producing strain particularly if some of

the antibiotics being made, and their biosynthetic gene clusters,

are new to science. Future work will be aimed at determining the

products of the five unassigned biosynthetic gene clusters in

Streptomyces S4 and identifying the additional antifungal com-

pound(s) made by this strain. This is likely to involve significant

challenges if, as we predict, these are novel secondary metabolites.

In conclusion, although good progress has been made recently

we are still a long way from understanding the chemical basis of

the symbioses between antibiotic-producing Actinobacteria and

their attine ant hosts. We hope that our study will stimulate further

research in this area and the identification of additional antifungal

and antibacterial compounds in this system.

Materials and Methods

Growth media and strains
Streptomyces strains were routinely grown on soya flour mannitol

(SFM) agar plates or in liquid TSB/YEME while E. coli strains

were grown on Lysogeny both- Lennox (LB) [22]. Media was

supplemented with antibiotics as required at the following

concentrations: carbenicillin (100 mg/ml), hygromycin B (50 mg/

ml), nalidixic acid (25 mg/ml), apramycin (50 mg/ml). S4 was

isolated and identified by 16S rDNA sequencing in a previous

study (GenBank accession HM179229). Antifungal bioassays with

C. albicans and E. weberi were carried out as described previously

[9]. Strains and plasmids are described in Table 3.

Construction of Streptomyces S4 mutant strains
In order to create the DfscC mutant, two 3 kb knockout arms

were PCR amplified using GoTaq Polymersae (Promega) with

oligonucleotide primers RFS78 and RFS79 (upstream arm) and

RFS80 and RFS81 (downstream arm), respectively. Oligonucle-

otide primers (Integrated DNA Technologies) were engineered at

their 59 end to contain restriction sites for cloning (Table S1). The

Figure 3. LC/MS analysis of Streptomyces S4 wild-type and
mutant strains compared to antimycin standards. The extracted
ion chromatograms for antimcyins A1–A4 are shown. Eight compounds
consistent with the mass of antimycin A1–A4 were produced by S4
wild-type and S4 DfscC, but were not produced by the DantC mutant.
Co-injection of antimycin A1–A4 with the S4 wild-type extract
demonstrated that antimycin A1–A4 have the same retention time as
four of the eight compounds produced by S4 wild-type. The UV visible
spectra and ESI positive mode mass spectra for antimycin A1–A4 and
the eight antimycin compounds produced by S4 wild-type are shown in
Fig. S1 and Fig. S2, respectively. Antimycin A1: R1 = CH(CH3)CH2CH3,
R2 = (CH2)5CH3. Antimycin A2: R1 = CH(CH3)2, R2 = (CH2)5CH3. Antimycin
A3: R1 = CH(CH3)CH2CH3, R2 = (CH2)3CH3. Antimycin A4: R1 = CH(CH3)2

R2 = (CH2)3CH3.
doi:10.1371/journal.pone.0022028.g003
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resulting PCR products were cloned into pGEMT-EZ (Promega)

and sequenced to verify their identity. The upstream arm was

released from pGEMT-EZ with HindIII and BamHI and cloned

into pKC1132 (which contained the RK2 conjugal origin of

transfer and as well as an apramycin resistance gene [22,23] cut

with the same enzymes to result in pKC1132-Up. Next, the

downstream arm was released from pGEMT-EZ with BamHI and

EcoRI and cloned into pKC1132-Up cut with the same enzymes

to result in pKC1132-UpDn. Finally, a hygromycin B resistance

cassette was PCR-amplified from pIJ10700 [24] using oligonucle-

otides RFS94 and RFS95 engineered to contain BamHI sites at

their 59 end. The hygromycin resistance cassette was cloned into

pGEMT-EZ and subsequently released by BamHI digestion and

cloned into pKC1132-UpDn cut with the same enzyme to result in

pKC1132-UpHygDn.

The plasmid pKC1132-UpHygDn was electroporated into E.

coli strain ET12567/pUZ8002 [25] and transferred to Streptomyces

S4 by cross-genera conjugation as previously described [22].

Transconjugants were selected for apramycin resistance. An

apramycin-resistant transconjugant was obtained and subsequent-

ly replica plated to obtain hygromycin-resistant and apramycin-

sensitive colonies, a phenotype indicating that the fscC gene had

been entirely replaced by the hygromycin resistance cassette and

that the plasmid backbone was no longer present. Loss of the

pKC1132-UpHygDn plasmid backbone and mutagenesis of the

fscC gene in the DfscC strain was confirmed by PCR.

In order to disrupt the antC gene a ,1.5 kb internal fragment of

the antC gene was PCR amplified using oligonucleotide primers

RFS121 and RFS122 which were engineered to contain BamHI

and EcoRI restriction sites at their 59 end, respectfully (Table S1).

The resulting PCR product was sequenced to verify its identity

and cloned into pGEMT-EZ to result in pGEMT-Ant. The

apramycin resistance cassette containing a conjugal origin of

transfer (aac(3)IV+oriT) was isolated from pIJ773 as a BamHI

fragment and cloned into the BamHI site (provided by RFS121) in

pGEMT-Ant to result in pGEMT-AntApr. The pGEMT-AntApr

plasmid was electroporated into ET12567/pUZ8002 and mobi-

lized to S4 wild-type and S4 DfscC by conjugation. Transconju-

Figure 4. Gene schematic of the Streptomyces S4 antimycin biosynthetic gene cluster and comparison to putative antimycin clusters
in Streptomyces albus and Streptomyces ambofaciens. The percent amino acid homology shared between S4 proteins and proteins in S. albus and
S. ambofaciens is indicated in the shaded boxes. The draft genomic sequence of S. albus is incomplete and the sequence for the putative antimycin
biosynthetic gene cluster is split over contig 11 and contig 12 with an estimated gap of ,820 bp in the antC gene. The Streptomyces S4 antimycin
biosynthetic gene cluster is located on scaffold06 at coordinates 81953–106578. The partial genome sequences of Streptomyces S4, S. albus J1074,
and S. ambofaciens ATCC 23877 are available under accession numbers CADY00000000, ABYC00000000 and AM238663, respectively. The gene names
for S. albus have been shortened to eliminate the first nine numbers of the gene name (e.g. SalbJ_290 = SalbJ_010100000290).
doi:10.1371/journal.pone.0022028.g004

Table 2. Proposed functions of proteins encoded by the
antimycin biosynthetic gene cluster.

Streptomyces S4 protein Proposed function

AntA Sigma factor

AntB Condensation domain

AntC Non-ribosomal peptide synthetase

AntD Polyketide synthase

AntE Dehydrogenase

AntF Acyl-CoA ligase

AntG Thiolation domain

AntH Phenylacetate dioxygenase

AntI Phenylacetate dioxygenase

AntJ Phenylacetate dioxygenase

AntK Phenylacetate dioxygenase

AntL Oxidoreductase

AntM Dehydrogenase

AntN Tryptophan 2,3-dioxygenase

AntO Lipase

doi:10.1371/journal.pone.0022028.t002
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gants were selected for apramycin resistance, a phenotype

indicating that the disruption plasmid has crossed into the

chromosome. Disruption of the antC gene was confirmed by

PCR amplification using oligonucleotide primers (RFS147 and

M13F, and RFS148 and M13R) targeting the DNA sequence

upstream and downstream of the expected site of integration.

LC-MS analysis
Streptomyces S4 wild-type and mutant strains were cultivated in

mannitol-soya flour liquid medium in a 250 ml flask shaking at

270 rpm. For analysis of candidicin production, cultures were

harvested after 10 days of growth, bacterial cells were removed by

centrifugation and the supernatant of three biological replicates

was combined. Fifty milliliters of the combined supernatant was

extracted three times with an equal volume of butanol. Butanol

extracts were combined and evaporated to dryness under vacuum

and the residue was resuspended in 0.5 ml of 50% aqueous

methanol. For analysis of antimycin production, cultures were

harvested after 4 days of growth, bacterial cells were removed by

centrifugation and the supernatant of two biological replicates was

combined and extracted with XAD16 resin (Sigma). Following

extraction, the resin was washed twice with ten milliliters of

deionized water and Streptomyces S4 metabolites were eluted from

the resin with one milliliter of 100% methanol. Prior to LC-MS

analysis the methanol elution was diluted with water to a final

methanol content of 50%. Antimycin A1–A4 standards were

purchased from Sigma Aldrich. Immediately prior to LC-MS

analysis samples were spun in a microcentrifuge at maximum

speed for 5 minutes to remove insoluble material. Only the

supernatant (10 ml) was used for injection into a Shimadzu single

quadrupole LC-MS-2010A mass spectrometer equipped with

Prominence HPLC system as described previously [9]. For co-

injection of antimycin A1-A4 with S4 wild-type extract 5 ml of

standard and 5 ml of wild-type extract were mixed immediately

prior to injection into the LC-MS.

Supporting Information

Figure S1 UV absorbance spectra for antimycin A1–A4
and eight antimycin compounds produced by Strepto-
myces S4. The UV absorbance spectra is shown for A) antimycin

A4 (RT = 8.40), B) antimycin A3 (RT = 8.97), C) antimycin A2

(RT = 9.50), D) antimycin A1 (RT = 10.00), E) S4 metabolite 1

(RT = 6.38), F) S4 metabolite 2 (RT = 6.87), G) S4 metabolite 3

(RT = 7.43), H) S4 metabolite 4 (RT = 8.00), I) S4 antimycin A4

(RT = 8.40), J) S4 antimycin A3 (RT = 8.97), K) S4 antimycin A2

(RT = 9.50), L) S4 antimycin A1 (RT = 10.00).

(PDF)

Figure S2 Mass spectra for antimycin A1–A4 and eight
antimycin compounds produced by Streptomyces S4.
The ESI positive mode detection mass spectra is shown for A)

antimycin A4 (RT = 8.40), B) antimycin A3 (RT = 8.97), C)

antimycin A2 (RT = 9.50), D) antimycin A1 (RT = 10.00), E) S4

metabolite 1 (RT = 6.38), F) S4 metabolite 2 (RT = 6.87), G) S4

metabolite 3 (RT = 7.43), H) S4 metabolite 4 (RT = 8.00), I) S4

antimycin A4 (RT = 8.40), J) S4 antimycin A3 (RT = 8.97), K) S4

antimycin A2 (RT = 9.50), L) S4 antimycin A1 (RT = 10.00).

(PDF)

Table 3. Strains and plasmids used in this study.

Strain or plasmid Genotype or comments Source or reference

Streptomyces S4 Wild type [9]

Streptomyces S4 DfscC S4 fscC null mutant This study

Streptomyces S4 DantC S4 antC disruption mutant This study

Streptomyces S4 DfscC DantC S4 fscC and antC double knockout strain This study

Candida albicans Candidia albicans CA-6 [26]

Escovopsis weberi Escovopsis weberi (CBS 11060) [9]

E. coli ET12567 Non-methylating host for transfer of DNA into Streptomyces spp. (dam, dcm, hsdM) [25]

E. coli TOP10 Host for routine cloning procedures Invitrogen

Plasmids

pGEMT-EZ Cloning vector for PCR products; AmpR Promega

pIJ773 Source of the aac(3)IV+oriT apramycin resistance resistance marker [27]

pIJ10700 PCR template for hygR cassette [24]

pUZ8002 Encodes conjugation machinery for mobilization of plasmids from E. coli to
Streptomyces; KanR

[25]

pKC1132 Suicide vector used for constructing gene deletions in Streptomyces spp. AprR

and contains conjugal origin of transfer
[23]

pKC1132-Up Derivative of pKC1132 containing the fscC upstream knockout arm cloned
into the HindIII and BamHI restriction sites

This study

pKC1132-UpDn Derivative of pKC1132-Up containing the fscC downstream knockout arm
cloned into the BamHI and EcoRI restriction sites

This study

pKC1132-UpHygDn Derivative of pKC1132-UpDn containing the hygromycin resistance cassette
from pIJ10700 cloned into the BamHI site

This study

pGEMT-Ant Derivative of pGEMT-EZ containing the a 1.5 kb fragment of the antC gene, AmpR This study

pGEMT-AntApr Derivative of pGEMT-Ant containing the aac(3)IV+oriT apramycin resistance gene
from pIJ773 cloned into the BamHI site provided by RFS121

This study

AmpR, ampicillin resistance, AprR, apramycin resistance, HygR, hygromycin resistance, KanR, kanamycin resistance, oriT, origin of transfer.
doi:10.1371/journal.pone.0022028.t003
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Table S1 Oligonucleotide primers used in this study.

(DOC)
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