654 research outputs found

    Gross community production and metabolic balance in the South Pacific Gyre, using a non intrusive bio-optical method

    Get PDF
    The very clear waters of the South Pacific Gyre likely constitute an end-member of oligotrophic conditions which remain essentially unknown with respect to its impact on carbon fixation and exportation. We describe a non-intrusive bio-optical method to quantify the various terms of a production budget (Gross community production, community losses, net community production) in this area. This method is based on the analysis of the diel cycle in Particulate Organic Carbon (POC), derived from high frequency measurements of the particle attenuation coefficient <i>c</i><sub>p</sub>. We report very high integrated rates of Gross Community Production within the euphotic layer (average of 846±484 mg C m<sup>−2</sup> d<sup>−1</sup> for 17 stations) that are far above any rates determined using incubation techniques for such areas. Furthermore we show that the daily production of POC is essentially balanced by the losses so that the system cannot be considered as net heterotrophic. Our results thus agree well with geochemical methods, but not with incubation studies based on oxygen methods. We stress to the important role of deep layers, below the euphotic layer, in contributing to carbon fixation when incident irradiance at the ocean surface is high (absence of cloud coverage). These deep layers, not considered up to know, might fuel part of the heterotrophic processes in the upper layer, including through dissolved organic carbon. We further demonstrate that, in these extremely clear and stratified waters, integrated gross community production is proportional to the POC content and surface irradiance via an efficiency index ψ <sub>GCP</sub><sup>*</sup>, the water column cross section for Gross Community Production. We finally discuss our results in the context of the role of oligotrophic gyre in the global carbon budget and of the possibility of using optical proxies from space for the development of growth community rather than primary production global models

    Colour-electric spectral function at next-to-leading order

    Full text link
    The spectral function related to the correlator of two colour-electric fields along a Polyakov loop determines the momentum diffusion coefficient of a heavy quark near rest with respect to a heat bath. We compute this spectral function at next-to-leading order, O(alpha_s^2), in the weak-coupling expansion. The high-frequency part of our result (omega >> T), which is shown to be temperature-independent, is accurately determined thanks to asymptotic freedom; the low-frequency part of our result (omega << T), in which Hard Thermal Loop resummation is needed in order to cure infrared divergences, agrees with a previously determined expression. Our result may help to calibrate the overall normalization of a lattice-extracted spectral function in a perturbative frequency domain T << omega << 1/a, paving the way for a non-perturbative estimate of the momentum diffusion coefficient at omega -> 0. We also evaluate the colour-electric Euclidean correlator, which could be directly compared with lattice simulations. As an aside we determine the Euclidean correlator in the lattice strong-coupling expansion, showing that through a limiting procedure it can in principle be defined also in the confined phase of pure Yang-Mills theory, even if a practical measurement could be very noisy there.Comment: 38 page

    Bisphosphonate Treatment Ameliorates Chemotherapy-Induced Bone and Muscle Abnormalities in Young Mice

    Get PDF
    Chemotherapy is frequently accompanied by several side effects, including nausea, diarrhea, anorexia and fatigue. Evidence from ours and other groups suggests that chemotherapy can also play a major role in causing not only cachexia, but also bone loss. This complicates prognosis and survival among cancer patients, affects quality of life, and can increase morbidity and mortality rates. Recent findings suggest that soluble factors released from resorbing bone directly contribute to loss of muscle mass and function secondary to metastatic cancer. However, it remains unknown whether similar mechanisms also take place following treatments with anticancer drugs. In this study, we found that young male CD2F1 mice (8-week old) treated with the chemotherapeutic agent cisplatin (2.5 mg/kg) presented marked loss of muscle and bone mass. Myotubes exposed to bone conditioned medium from cisplatin-treated mice showed severe atrophy (−33%) suggesting a bone to muscle crosstalk. To test this hypothesis, mice were administered cisplatin in combination with an antiresorptive drug to determine if preservation of bone mass has an effect on muscle mass and strength following chemotherapy treatment. Mice received cisplatin alone or combined with zoledronic acid (ZA; 5 μg/kg), a bisphosphonate routinely used for the treatment of osteoporosis. We found that cisplatin resulted in progressive loss of body weight (−25%), in line with reduced fat (−58%) and lean (−17%) mass. As expected, microCT bone histomorphometry analysis revealed significant reduction in bone mass following administration of chemotherapy, in line with reduced trabecular bone volume (BV/TV) and number (Tb.N), as well as increased trabecular separation (Tb.Sp) in the distal femur. Conversely, trabecular bone was protected when cisplatin was administered in combination with ZA. Interestingly, while the animals exposed to chemotherapy presented significant muscle wasting (~-20% vs. vehicle-treated mice), the administration of ZA in combination with cisplatin resulted in preservation of muscle mass (+12%) and strength (+42%). Altogether, these observations support our hypothesis of bone factors targeting muscle and suggest that pharmacological preservation of bone mass can benefit muscle mass and function following chemotherapy

    How to compute the thermal quarkonium spectral function from first principles?

    Full text link
    In the limit of a high temperature T and a large quark-mass M, implying a small gauge coupling g, the heavy quark contribution to the spectral function of the electromagnetic current can be computed systematically in the weak-coupling expansion. We argue that the scale hierarchy relevant for addressing the disappearance ("melting") of the resonance peak from the spectral function reads M >> T > g^2 M > gT >> g^4 M, and review how the heavy scales can be integrated out one-by-one, to construct a set of effective field theories describing the low-energy dynamics. The parametric behaviour of the melting temperature in the weak-coupling limit is specified.Comment: 8 pages; to appear in the Proceedings of SEWM08, Amsterdam, the Netherlands, August 26-29, 200

    Infrared singularities of QCD scattering amplitudes in the Regge limit to all orders

    Get PDF
    Scattering amplitudes of partons in QCD contain infrared divergences which can be resummed to all orders in terms of an anomalous dimension. Independently, in the limit of high-energy forward scattering, large logarithms of the energy can be resummed using Balitsky-Fadin-Kuraev-Lipatov theory. We use the latter to analyze the infrared-singular part of amplitudes to all orders in perturbation theory and to next-to-leading-logarithm accuracy in the high-energy limit, resumming the two-Reggeon contribution. Remarkably, we find a closed form for the infrared-singular part, predicting the Regge limit of the soft anomalous dimension to any loop order.Comment: 35 pages, 8 figure

    Hsp27 regulates podocyte cytoskeletal changes in an in vitro model of podocyte process retraction

    Full text link
    Nephrotic syndrome (NS) is characterized by structural changes in the actin‐rich foot processes of glomerular podocytes. We previously identified high concentrations of the small heat shock protein hsp27 within podocytes as well as increased glomerular accumulation and phosphorylation of hsp27 in puromycin aminonucleoside (PAN) ‐induced experimental NS. Here we analyzed murine podocytes stably transfected with hsp27 sense, antisense, and vector control constructs using a newly developed in vitro PAN model system. Cell morphology and the microfilament structure of untreated sense and antisense transfectants were altered compared with controls. Vector cell survival, polymerized actin content, cell area, and hsp27 content increased after 1.25 μg/ml PAN treatment and decreased after 5.0 μg/ml treatment. In contrast, sense cells were unaffected by 1.25 μg/ml PAN treatment whereas antisense cells showed decreases or no changes in all parameters. Treatment of sense cells with 5.0 μ g/ml PAN resulted in increased cell survival and cell area whereas antisense cells underwent significant decreases in all parameters. Hsp27 provided dramatic protection against PAN‐induced microfilament disruption in sense > vector > antisense cells. We conclude that hsp27 is able to regulate both the morphological and actin cytoskeletal response of podocytes in an in vitro model of podocyte injury.—Smoyer, W. E., Ransom, R. F. Hsp27 regulates podocyte cytoskeletal changes in an in vitro model of podocyte process retraction. FASEB J. 16, 315–326 (2002)Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154256/1/fsb2fj010681com.pd

    RG flow of transport quantities

    Full text link
    The RG flow equation of various transport quantities are studied in arbitrary spacetime dimensions, in the fixed as well as fluctuating background geometry both for the Maxwellian and DBI type of actions. The regularity condition on the flow equation of the conductivity at the horizon for the DBI action reproduces naturally the leading order result of {\it Hartnoll et al.}, [{\it JHEP}, {\bf 04}, 120 (2010)]. Motivated by the result of {\it van der Marel et al.}, [{\it science}, {\bf 425}, 271 (2003], we studied, analytically, the conductivity versus frequency plane by dividing it into three distinct parts: ωT\omega T and ω>>T\omega >> T. In order to compare, we choose 3+1 dimensional bulk spacetime for the computation of the conductivity. In the ω<T\omega <T range, the conductivity does not show up the Drude like form in any spacetime dimensions. In the ω>T\omega > T range and staying away from the horizon, for the DBI action with unit dynamical exponent, non-zero magnetic field and charge density, the conductivity goes as ω2/3\omega^{-2/3}, whereas the phase of the conductivity, goes as, ArcTan(Imσxx/Reσxx)=π/6ArcTan(Im\sigma^{xx}/Re\sigma^{xx})=\pi/6 and ArcTan(Imσxy/Reσxy)=π/3ArcTan(Im\sigma^{xy}/Re\sigma^{xy})=-\pi/3. There exists a universal quantity at the horizon that is the phase angle of conductivity, which either vanishes or an integral multiple of π\pi. Furthermore, we calculate the temperature dependence to the thermoelectric and the thermal conductivity at the horizon. The charge diffusion constant for the DBI action is studied.Comment: 1+68 pages, 12 figures and 4 appendices; V2: The charge diffusion constant is calculated for arbitrary spacetime dimensions and related references added; v3: Connection with the RG flow of 1010.4036 is made; v4: Several corrections, typos fixed and a ref. adde

    Thermodynamics of AdS/QCD

    Get PDF
    We study finite temperature properties of four dimensional QCD-like gauge theories in the gauge theory/gravity duality picture. The gravity dual contains two deformed 5d AdS metrics, with and without a black hole, and a dilaton. We study the thermodynamics of the 4d boundary theory and constrain the two metrics so that they correspond to a high and a low temperature phase separated by a first order phase transition. The equation of state has the standard form for the pressure of a strongly coupled fluid modified by a vacuum energy, a bag constant. We determine the parameters of the deformation by using QCD results for TcT_c and the hadron spectrum. With these parameters, we show that the phase transition in the 4d boundary theory and the 5d bulk Hawking-Page transition agree. We probe the dynamics of the two phases by computing the quark-antiquark free energy in them and confirm that the transition corresponds to confinement-deconfinement transition.Comment: 1+19 pages, 6 figures, references added, section 3 improve

    B-Cell Activating Factor Secreted by Neutrophils Is a Critical Player in Lung Inflammation to Cigarette Smoke Exposure.

    Get PDF
    Cigarette smoke (CS) is the major cause of chronic lung injuries, such as chronic obstructive pulmonary disease (COPD). In patients with severe COPD, tertiary lymphoid follicles containing B lymphocytes and B cell-activating factor (BAFF) overexpression are associated with disease severity. In addition, BAFF promotes adaptive immunity in smokers and mice chronically exposed to CS. However, the role of BAFF in the early phase of innate immunity has never been investigated. We acutely exposed C57BL/6J mice to CS and show early BAFF expression in the bronchoalveolar space and lung tissue that correlates to airway neutrophil and macrophage influx. Immunostaining analysis revealed that neutrophils are the major source of BAFF. We confirmed in vitro that neutrophils secrete BAFF in response to cigarette smoke extract (CSE) stimulation. Antibody-mediated neutrophil depletion significantly dampens lung inflammation to CS exposure but only partially decreases BAFF expression in lung tissue and bronchoalveolar space suggesting additional sources of BAFF. Importantly, BAFF deficient mice displayed decreased airway neutrophil recruiting chemokines and neutrophil influx while the addition of exogenous BAFF significantly enhanced this CS-induced neutrophilic inflammation. This demonstrates that BAFF is a key proinflammatory cytokine and that innate immune cells in particular neutrophils, are an unconsidered source of BAFF in early stages of CS-induced innate immunity
    corecore