58 research outputs found

    DESIGN OF NEURAL NETWORK AS DATA FLOW MODEL FOR IMAGE COMPRESSION

    Get PDF
    In digital communication bandwidth is essential parameter to be considered. Transmission and storage of images requires lot of memory in order to use bandwidth efficiently neural network and Discrete cosine transform together are used in this paper to compress images. Artificial neural network gives fixed compression ratio for any images results in fixed usage of memory and bandwidth. In this paper multi-layer feedforward neural network has been employed to achieve image compression. The proposed technique divides the original image in to several blocks and applies Discrete Cosine Transform (DCT) to these blocks as a pre-process technique. Quality of image is noticed with change in training algorithms, convergence time to attain desired mean square error. Compression ratio and PSNR in dB is calculated by varying hidden neurons. The proposed work is designed using MATLAB 7.10. and synthesized by mapping on Vertex 5 in Xilinx ISE for understanding hardware complexity. Keywords - backpropagation, Discret

    Demographic and clinicopathologic profile of malignant epithelial ovarian tumors: an experience from a tertiary cancer care centre in Bangalore, South India

    Get PDF
    Background: Ovarian cancer is fast emerging as the leading cancer of the female genital tract. It is the second most common gynecological malignancy in India, but has poor outcomes making it the leading cause of gynecologic cancer related deaths. There is a paucity of data regarding demographic details, patterns of care and outcomes of ovarian epithelial malignancies in India. This is a study to evaluate the demographic details, clinical profile and pathology details of epithelial ovarian cancer registering in atertiary cancer center in Bangalore, Karnataka, India.Methods: This is a retrospective study of the case records of patients diagnosed with epithelial ovarian cancer from January 2012 to December 2014.Results: Malignantovarian tumors constituted 5.6% of all malignancies in women. 84 cases were of epithelial origin constituting 64.4% of all malignant ovarian tumors. 58% of patients were from Karnataka and 25% were from West Bengal. 27% underwent suboptimal surgery outside at presentation. The median age at presentation was 51 years. Most of the patients were parous (25% were para 2 and 3). 5% patients were nulliparous. Pain abdomen (39%) and abdominal distension/ bloating (16%) were the most common symptoms. 75% of these cases presented in III-IV stage. Method of diagnosis was: primary surgery and Biopsy of mass (50%), fine needle aspiration cytology of mass or ascites/ pleural effusion (40%), and diagnostic laparoscopy in (9.5%) of the patients. The most common histological variants were serous cystadenocarcinoma (32%) and mucinous adenocarcinoma (15%).Conclusions: Majority of the patients presented with vague nonspecific abdominal complaints which leads to delay in diagnosis. Most of the patients presented in advanced stage of the disease. Delay in diagnosis and improper management prior to registering in tertiary cancer centre was common. There is a need to improve awareness regarding ovarian cancer in general population and also primary care physician

    OptFlux: an open-source software platform for in silico metabolic engineering

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Over the last few years a number of methods have been proposed for the phenotype simulation of microorganisms under different environmental and genetic conditions. These have been used as the basis to support the discovery of successful genetic modifications of the microbial metabolism to address industrial goals. However, the use of these methods has been restricted to bioinformaticians or other expert researchers. The main aim of this work is, therefore, to provide a user-friendly computational tool for Metabolic Engineering applications.</p> <p>Results</p> <p><it>OptFlux </it>is an open-source and modular software aimed at being the reference computational application in the field. It is the first tool to incorporate strain optimization tasks, i.e., the identification of Metabolic Engineering targets, using Evolutionary Algorithms/Simulated Annealing metaheuristics or the previously proposed OptKnock algorithm. It also allows the use of stoichiometric metabolic models for (i) phenotype simulation of both wild-type and mutant organisms, using the methods of Flux Balance Analysis, Minimization of Metabolic Adjustment or Regulatory on/off Minimization of Metabolic flux changes, (ii) Metabolic Flux Analysis, computing the admissible flux space given a set of measured fluxes, and (iii) pathway analysis through the calculation of Elementary Flux Modes.</p> <p><it>OptFlux </it>also contemplates several methods for model simplification and other pre-processing operations aimed at reducing the search space for optimization algorithms.</p> <p>The software supports importing/exporting to several flat file formats and it is compatible with the SBML standard. <it>OptFlux </it>has a visualization module that allows the analysis of the model structure that is compatible with the layout information of <it>Cell Designer</it>, allowing the superimposition of simulation results with the model graph.</p> <p>Conclusions</p> <p>The <it>OptFlux </it>software is freely available, together with documentation and other resources, thus bridging the gap from research in strain optimization algorithms and the final users. It is a valuable platform for researchers in the field that have available a number of useful tools. Its open-source nature invites contributions by all those interested in making their methods available for the community.</p> <p>Given its plug-in based architecture it can be extended with new functionalities. Currently, several plug-ins are being developed, including network topology analysis tools and the integration with Boolean network based regulatory models.</p

    The CCP4 suite: integrative software for macromolecular crystallography

    Get PDF
    The Collaborative Computational Project No. 4 (CCP4) is a UK-led international collective with a mission to develop, test, distribute and promote software for macromolecular crystallography. The CCP4 suite is a multiplatform collection of programs brought together by familiar execution routines, a set of common libraries and graphical interfaces. The CCP4 suite has experienced several considerable changes since its last reference article, involving new infrastructure, original programs and graphical interfaces. This article, which is intended as a general literature citation for the use of the CCP4 software suite in structure determination, will guide the reader through such transformations, offering a general overview of the new features and outlining future developments. As such, it aims to highlight the individual programs that comprise the suite and to provide the latest references to them for perusal by crystallographers around the world.Jon Agirre is a Royal Society University Research Fellow (UF160039 and URF\R\221006). Mihaela Atanasova is funded by the UK Engineering and Physical Sciences Research Council (EPSRC; EP/R513386/1). Haroldas Bagdonas is funded by The Royal Society (RGF/R1/181006). Jose´ Javier Burgos-Ma´rmol and Daniel J. Rigden are supported by the BBSRC (BB/S007105/1). Robbie P. Joosten is funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 871037 (iNEXTDiscovery) and by CCP4. This work was supported by the Medical Research Council as part of United Kingdom Research and Innovation, also known as UK Research and Innovation: MRC file reference No. MC_UP_A025_1012 to Garib N. Murshudov, which also funded Keitaro Yamashita, Paul Emsley and Fei Long. Robert A. Nicholls is funded by the BBSRC (BB/S007083/1). Soon Wen Hoh is funded by the BBSRC (BB/T012935/1). Kevin D. Cowtan and Paul S. Bond are funded in part by the BBSRC (BB/S005099/1). John Berrisford and Sameer Velankar thank the European Molecular Biology Laboratory–European Bioinformatics Institute, who supported this work. Andrea Thorn was supported in the development of AUSPEX by the German Federal Ministry of Education and Research (05K19WWA and 05K22GU5) and by Deutsche Forschungsgemeinschaft (TH2135/2-1). Petr Kolenko and Martin Maly´ are funded by the MEYS CR (CZ.02.1.01/0.0/0.0/16_019/0000778). Martin Maly´ is funded by the Czech Academy of Sciences (86652036) and CCP4/STFC (521862101). Anastassis Perrakis acknowledges funding from iNEXT (grant No. 653706), iNEXT-Discovery (grant No. 871037), West-Life (grant No. 675858) and EOSC-Life (grant No. 824087) funded by the Horizon 2020 program of the European Commission. Robbie P. Joosten has been the recipient of a Veni grant (722.011.011) and a Vidi grant (723.013.003) from the Netherlands Organization for Scientific Research (NWO). Maarten L. Hekkelman, Robbie P. Joosten and Anastassis Perrakis thank the Research High Performance Computing facility of the Netherlands Cancer Institute for providing and maintaining computation resources and acknowledge the institutional grant from the Dutch Cancer Society and the Dutch Ministry of Health, Welfare and Sport. Tarik R. Drevon is funded by the BBSRC (BB/S007040/1). Randy J. Read is supported by a Principal Research Fellowship from the Wellcome Trust (grant 209407/Z/17/Z). Atlanta G. Cook is supported by a Wellcome Trust SRF (200898) and a Wellcome Centre for Cell Biology core grant (203149). Isabel Uso´n acknowledges support from STFC-UK/CCP4: ‘Agreement for the integration of methods into the CCP4 software distribution, ARCIMBOLDO_LOW’ and Spanish MICINN/AEI/FEDER/UE (PID2021-128751NB-I00). Pavol Skubak and Navraj Pannu were funded by the NWO Applied Sciences and Engineering Domain and CCP4 (grant Nos. 13337 and 16219). Bernhard Lohkamp was supported by the Ro¨ntgen A˚ ngstro¨m Cluster (grant 349-2013-597). Nicholas Pearce is currently funded by the SciLifeLab and Wallenberg Data Driven Life Science Program (grant KAW 2020.0239) and has previously been funded by a Veni Fellowship (VI.Veni.192.143) from the Dutch Research Council (NWO), a Long-term EMBO fellowship (ALTF 609-2017) and EPSRC grant EP/G037280/1. David M. Lawson received funding from BBSRC Institute Strategic Programme Grants (BB/P012523/1 and BB/P012574/1). Lucrezia Catapano is the recipient of an STFC/CCP4-funded PhD studentship (Agreement No: 7920 S2 2020 007).Peer reviewe

    Complete Budding and Asymmetric Division of Primitive Model Cells To Produce Daughter Vesicles with Different Interior and Membrane Compositions

    Get PDF

    The CCP4 suite: integrative software for macromolecular crystallography

    Get PDF
    The Collaborative Computational Project No. 4 (CCP4) is a UK-led international collective with a mission to develop, test, distribute and promote software for macromolecular crystallography. The CCP4 suite is a multiplatform collection of programs brought together by familiar execution routines, a set of common libraries and graphical interfaces. The CCP4 suite has experienced several considerable changes since its last reference article, involving new infrastructure, original programs and graphical interfaces. This article, which is intended as a general literature citation for the use of the CCP4 software suite in structure determination, will guide the reader through such transformations, offering a general overview of the new features and outlining future developments. As such, it aims to highlight the individual programs that comprise the suite and to provide the latest references to them for perusal by crystallographers around the world

    The CCP4 suite : integrative software for macromolecular crystallography

    Get PDF
    The Collaborative Computational Project No. 4 (CCP4) is a UK-led international collective with a mission to develop, test, distribute and promote software for macromolecular crystallography. The CCP4 suite is a multiplatform collection of programs brought together by familiar execution routines, a set of common libraries and graphical interfaces. The CCP4 suite has experienced several considerable changes since its last reference article, involving new infrastructure, original programs and graphical interfaces. This article, which is intended as a general literature citation for the use of the CCP4 software suite in structure determination, will guide the reader through such transformations, offering a general overview of the new features and outlining future developments. As such, it aims to highlight the individual programs that comprise the suite and to provide the latest references to them for perusal by crystallographers around the world

    Resource Aware Flow Control in IoT

    No full text
    corecore