394 research outputs found

    The Scalar Field Kernel in Cosmological Spaces

    Full text link
    We construct the quantum mechanical evolution operator in the Functional Schrodinger picture - the kernel - for a scalar field in spatially homogeneous FLRW spacetimes when the field is a) free and b) coupled to a spacetime dependent source term. The essential element in the construction is the causal propagator, linked to the commutator of two Heisenberg picture scalar fields. We show that the kernels can be expressed solely in terms of the causal propagator and derivatives of the causal propagator. Furthermore, we show that our kernel reveals the standard light cone structure in FLRW spacetimes. We finally apply the result to Minkowski spacetime, to de Sitter spacetime and calculate the forward time evolution of the vacuum in a general FLRW spacetime.Comment: 13 pages, 1 figur

    Non-local Correlations are Generic in Infinite-Dimensional Bipartite Systems

    Full text link
    It was recently shown that the nonseparable density operators for a bipartite system are trace norm dense if either factor space has infinite dimension. We show here that non-local states -- i.e., states whose correlations cannot be reproduced by any local hidden variable model -- are also dense. Our constructions distinguish between the cases where both factor spaces are infinite-dimensional, where we show that states violating the CHSH inequality are dense, and the case where only one factor space is infinite-dimensional, where we identify open neighborhoods of nonseparable states that do not violate the CHSH inequality but show that states with a subtler form of non-locality (often called "hidden" non-locality) remain dense.Comment: 8 pages, RevTe

    Local Operations and Completely Positive Maps in Algebraic Quantum Field Theory

    Full text link
    Einstein introduced the locality principle which states that all physical effect in some finite space-time region does not influence its space-like separated finite region. Recently, in algebraic quantum field theory, R\'{e}dei captured the idea of the locality principle by the notion of operational separability. The operation in operational separability is performed in some finite space-time region, and leaves unchanged the state in its space-like separated finite space-time region. This operation is defined with a completely positive map. In the present paper, we justify using a completely positive map as a local operation in algebraic quantum field theory, and show that this local operation can be approximately written with Kraus operators under the funnel property

    AQFT from n-functorial QFT

    Full text link
    There are essentially two different approaches to the axiomatization of quantum field theory (QFT): algebraic QFT, going back to Haag and Kastler, and functorial QFT, going back to Atiyah and Segal. More recently, based on ideas by Baez and Dolan, the latter is being refined to "extended" functorial QFT by Freed, Hopkins, Lurie and others. The first approach uses local nets of operator algebras which assign to each patch an algebra "of observables", the latter uses n-functors which assign to each patch a "propagator of states". In this note we present an observation about how these two axiom systems are naturally related: we demonstrate under mild assumptions that every 2-dimensional extended Minkowskian QFT 2-functor ("parallel surface transport") naturally yields a local net. This is obtained by postcomposing the propagation 2-functor with an operation that mimics the passage from the Schroedinger picture to the Heisenberg picture in quantum mechanics. The argument has a straightforward generalization to general pseudo-Riemannian structure and higher dimensions.Comment: 39 pages; further examples added: Hopf spin chains and asymptotic inclusion of subfactors; references adde

    Polymer based silver nanocomposites as versatile solid film and aqueous emulsion SERS substrates

    Get PDF
    Nanocomposites containing Ag nanoparticles (average diameter similar to 11 nm) dispersed in poly(tertbutylacrylate) were prepared by in situ polymerization via miniemulsions and constitute active and versatile SERS substrates. The use of this synthetic strategy enables the dual use of the final composites as SERS substrates, both as aqueous emulsions and as cast films, shown here by several measurements using thiosalicylic acid as the testing analyte. The main advantage of these types of materials is related to the potential to scale up and the widespread use of handy substrates, using technology already available. This requires homogeneous composite substrates with SERS activity and this was demonstrated here by means of confocal Raman microscopy. Finally, a series of experiments were carried out on Ag/polymer nanocomposites submitted to temperature variations below and above the polymer glass transition temperature (T(g)) in order to conclude about the effect of temperature processing conditions on the composites' SERS activity.FCT- SFRH/BD/66460/2009FCT- SFRH/BPD/66407/2009FCT- PTDC/QUI/67712/ 2006RNME-Pole UA-FCT Project REDE/1509/RME/200

    Environmental and Demographic Determinants of Avian Influenza Viruses in Waterfowl across the Contiguous United States

    Get PDF
    Outbreaks of avian influenza in North American poultry have been linked to wild waterfowl. A first step towards understanding where and when avian influenza viruses might emerge from North American waterfowl is to identify environmental and demographic determinants of infection in their populations. Laboratory studies indicate water temperature as one determinant of environmental viral persistence and we explored this hypothesis at the landscape scale. We also hypothesized that the interval apparent prevalence in ducks within a local watershed during the overwintering season would influence infection probabilities during the following breeding season within the same local watershed. Using avian influenza virus surveillance data collected from 19,965 wild waterfowl across the contiguous United States between October 2006 and September 2009 We fit Logistic regression models relating the infection status of individual birds sampled on their breeding grounds to demographic characteristics, temperature, and interval apparent prevalence during the preceding overwintering season at the local watershed scale. We found strong support for sex, age, and species differences in the probability an individual duck tested positive for avian influenza virus. In addition, we found that for every seven days the local minimum temperature fell below zero, the chance an individual would test positive for avian influenza virus increased by 5.9 percent. We also found a twelve percent increase in the chance an individual would test positive during the breeding season for every ten percent increase in the interval apparent prevalence during the prior overwintering season. These results suggest that viral deposition in water and sub-freezing temperatures during the overwintering season may act as determinants of individual level infection risk during the subsequent breeding season. Our findings have implications for future surveillance activities in waterfowl and domestic poultry populations. Further study is needed to identify how these drivers might interact with other host-specific infection determinants, such as species phylogeny, immunological status, and behavioral characteristics

    Evidence for Modification of the Electronic Density-of-States by Zero-Point Lattice Motion in One-Dimension - Luminescence and Resonance Raman Studies of An Mx Solid

    Get PDF
    Luminescence spectra, both emission and excitation, and the excitation dependence of the resonance Raman spectra, have been measured for the quasi-one-dimensional charge-density-wave material [Pt(en)2][Pt(en)2Cl2](ClO4)4, en = 1,2-diaminoethane. While the luminescence experiments show the existence of tail states at low temperature in the band gap region, the Raman measurements conclusively demonstrate that this tail does not arise from ordinary static structural disorder. These results can be explained by considering the zero-point motion of the lattice

    Identification of Roles for Peptide: N-Glycanase and Endo-Ξ²-N-Acetylglucosaminidase (Engase1p) during Protein N-Glycosylation in Human HepG2 Cells

    Get PDF
    BACKGROUND: During mammalian protein N-glycosylation, 20% of all dolichol-linked oligosaccharides (LLO) appear as free oligosaccharides (fOS) bearing the di-N-acetylchitobiose (fOSGN2), or a single N-acetylglucosamine (fOSGN), moiety at their reducing termini. After sequential trimming by cytosolic endo beta-N-acetylglucosaminidase (ENGase) and Man2c1 mannosidase, cytosolic fOS are transported into lysosomes. Why mammalian cells generate such large quantities of fOS remains unexplored, but fOSGN2 could be liberated from LLO by oligosaccharyltransferase, or from glycoproteins by NGLY1-encoded Peptide-N-Glycanase (PNGase). Also, in addition to converting fOSGN2 to fOSGN, the ENGASE-encoded cytosolic ENGase of poorly defined function could potentially deglycosylate glycoproteins. Here, the roles of Ngly1p and Engase1p during fOS metabolism were investigated in HepG2 cells. METHODS/PRINCIPAL FINDINGS: During metabolic radiolabeling and chase incubations, RNAi-mediated Engase1p down regulation delays fOSGN2-to-fOSGN conversion, and it is shown that Engase1p and Man2c1p are necessary for efficient clearance of cytosolic fOS into lysosomes. Saccharomyces cerevisiae does not possess ENGase activity and expression of human Engase1p in the png1Delta deletion mutant, in which fOS are reduced by over 98%, partially restored fOS generation. In metabolically radiolabeled HepG2 cells evidence was obtained for a small but significant Engase1p-mediated generation of fOS in 1 h chase but not 30 min pulse incubations. Ngly1p down regulation revealed an Ngly1p-independent fOSGN2 pool comprising mainly Man(8)GlcNAc(2), corresponding to approximately 70% of total fOS, and an Ngly1p-dependent fOSGN2 pool enriched in Glc(1)Man(9)GlcNAc(2) and Man(9)GlcNAc(2) that corresponds to approximately 30% of total fOS. CONCLUSIONS/SIGNIFICANCE: As the generation of the bulk of fOS is unaffected by co-down regulation of Ngly1p and Engase1p, alternative quantitatively important mechanisms must underlie the liberation of these fOS from either LLO or glycoproteins during protein N-glycosylation. The fully mannosylated structures that occur in the Ngly1p-dependent fOSGN2 pool indicate an ERAD process that does not require N-glycan trimming

    Entry of Yersinia pestis into the Viable but Nonculturable State in a Low-Temperature Tap Water Microcosm

    Get PDF
    Yersinia pestis, the causative agent of plague, has caused several pandemics throughout history and remains endemic in the rodent populations of the western United States. More recently, Y. pestis is one of several bacterial pathogens considered to be a potential agent of bioterrorism. Thus, elucidating potential mechanisms of survival and persistence in the environment would be important in the event of an intentional release of the organism. One such mechanism is entry into the viable but non-culturable (VBNC) state, as has been demonstrated for several other bacterial pathogens. In this study, we showed that Y. pestis became nonculturable by normal laboratory methods after 21 days in a low-temperature tap water microcosm. We further show evidence that, after the loss of culturability, the cells remained viable by using a variety of criteria, including cellular membrane integrity, uptake and incorporation of radiolabeled amino acids, and protection of genomic DNA from DNase I digestion. Additionally, we identified morphological and ultrastructural characteristics of Y. pestis VBNC cells, such as cell rounding and large periplasmic spaces, by electron microscopy, which are consistent with entry into the VBNC state in other bacteria. Finally, we demonstrated resuscitation of a small number of the non-culturable cells. This study provides compelling evidence that Y. pestis persists in a low-temperature tap water microcosm in a viable state yet is unable to be cultured under normal laboratory conditions, which may prove useful in risk assessment and remediation efforts, particularly in the event of an intentional release of this organism
    • …
    corecore