718 research outputs found

    Strategic decision-making support for distribution system planning with flexibility alternatives

    Get PDF
    The ongoing power system transformation requires rethinking the planning and operation practices of the different segments to accommodate the necessary changes and take advantage of the forthcoming opportunities. This paper concerns novel approaches for appraising initiatives involving the use of flexibility from grid-connected users. This paper proposes a Decision Theory based Multi-Criteria Cost-Benefit Analysis (DT-MCA-CBA) methodology for smart grid initiatives that capture the complexity of the distribution system planning activities in which flexibility competes with grid expansion. Based on international guidelines, the proposed DT-MCA-CBA methodology systematically assesses tangible and intangible impacts, considering multiple conflicting criteria. The DT-MCA-CBA methodology relies on a novel approach that combines MCA and Decision Theory to identify the most valuable option in a complex decision-making problem by modelling the stakeholder perspective with the MiniMax regret decision rule. The proposed DT-MCA-CBA methodology is applied to a comparative case study concerning four different approaches for distribution system planning. A web-based software which implements the proposed decision-making framework and the DT-MCA-CBA methodology is developed to provide a novel decision-making support tool for strategical smart distribution system planning

    Non-renewal statistics in the catalytic activity of enzyme molecules at mesoscopic concentrations

    Full text link
    Recent fluorescence spectroscopy measurements of single-enzyme kinetics have shown that enzymatic turnovers form a renewal stochastic process in which the inverse of the mean waiting time between turnovers follows the Michaelis-Menten equation. Under typical physiological conditions, however, tens to thousands of enzymes react in catalyzing thousands to millions of substrates. We study enzyme kinetics at these physiologically relevant conditions through a master equation including stochasticity and molecular discreteness. From the exact solution of the master equation we find that the waiting times are neither independent nor are they identically distributed, implying that enzymatic turnovers form a non-renewal stochastic process. The inverse of the mean waiting time shows strong departures from the Michaelis-Menten equation. The waiting times between consecutive turnovers are anti-correlated, where short intervals are more likely to be followed by long intervals and vice versa. Correlations persist beyond consecutive turnovers indicating that multi-scale fluctuations govern enzyme kinetics.Comment: 5 pages, 4 figures, to appear in Physical Review Letter

    Measurement of the Spectral Shape of the beta-decay of 137Xe to the Ground State of 137Cs in EXO-200 and Comparison with Theory

    Full text link
    We report on a comparison between the theoretically predicted and experimentally measured spectra of the first-forbidden non-unique β\beta-decay transition ^{137}\textrm{Xe}(7/2^-)\to\,^{137}\textrm{Cs}(7/2^+). The experimental data were acquired by the EXO-200 experiment during a deployment of an AmBe neutron source. The ultra-low background environment of EXO-200, together with dedicated source deployment and analysis procedures, allowed for collection of a pure sample of the decays, with an estimated signal-to-background ratio of more than 99-to-1 in the energy range from 1075 to 4175 keV. In addition to providing a rare and accurate measurement of the first-forbidden non-unique β\beta-decay shape, this work constitutes a novel test of the calculated electron spectral shapes in the context of the reactor antineutrino anomaly and spectral bump.Comment: Version as accepted by PR

    Deep Neural Networks for Energy and Position Reconstruction in EXO-200

    Full text link
    We apply deep neural networks (DNN) to data from the EXO-200 experiment. In the studied cases, the DNN is able to reconstruct the relevant parameters - total energy and position - directly from raw digitized waveforms, with minimal exceptions. For the first time, the developed algorithms are evaluated on real detector calibration data. The accuracy of reconstruction either reaches or exceeds what was achieved by the conventional approaches developed by EXO-200 over the course of the experiment. Most existing DNN approaches to event reconstruction and classification in particle physics are trained on Monte Carlo simulated events. Such algorithms are inherently limited by the accuracy of the simulation. We describe a unique approach that, in an experiment such as EXO-200, allows to successfully perform certain reconstruction and analysis tasks by training the network on waveforms from experimental data, either reducing or eliminating the reliance on the Monte Carlo.Comment: Accepted version. 33 pages, 28 figure

    Search for nucleon decays with EXO-200

    Get PDF
    A search for instability of nucleons bound in 136^{136}Xe nuclei is reported with 223 kgâ‹…\cdotyr exposure of 136^{136}Xe in the EXO-200 experiment. Lifetime limits of 3.3Ă—1023\times 10^{23} and 1.9Ă—1023\times 10^{23} yrs are established for nucleon decay to 133^{133}Sb and 133^{133}Te, respectively. These are the most stringent to date, exceeding the prior decay limits by a factor of 9 and 7, respectively

    AIDS virus–specific CD8+ T lymphocytes against an immunodominant cryptic epitope select for viral escape

    Get PDF
    Cryptic major histocompatibility complex class I epitopes have been detected in several pathogens, but their importance in the immune response to AIDS viruses remains unknown. Here, we show that Mamu-B*17+ simian immunodeficiency virus (SIV)mac239-infected rhesus macaques that spontaneously controlled viral replication consistently made strong CD8+ T lymphocyte (CD8-TL) responses against a cryptic epitope, RHLAFKCLW (cRW9). Importantly, cRW9-specific CD8-TL selected for viral variation in vivo and effectively suppressed SIV replication in vitro, suggesting that they might play a key role in the SIV-specific response. The discovery of an immunodominant CD8-TL response in elite controller macaques against a cryptic epitope suggests that the AIDS virus–specific cellular immune response is likely far more complex than is generally assumed

    Design and performance of a hybrid fast and thermal neutron detector

    Get PDF
    We report the characterization, calibration and performance of a custom-built hybrid detector consisting of BC501A liquid scintillator and BC702 scintillator for the detection of fast and thermal neutrons, respectively. Pulse Shape Discrimination techniques are developed to distinguish events due to gamma-rays, fast and thermal neutrons. Software analysis packages are developed to derive raw neutron energy spectra from measured proton recoil spectra. The validity is demonstrated through the reconstruction of the (AmBe)-Am-241(alpha,n) neutron spectrum. (C) 2017 Elsevier B. V. All rights reserved
    • …
    corecore