43 research outputs found

    An Analysis of Some Refractive Error Trends in US Air Force Pilots and Navigators

    Get PDF
    Refractive error trends with age in US Air Force pilots and navigator

    Best practice for motor imagery: a systematic literature review on motor imagery training elements in five different disciplines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The literature suggests a beneficial effect of motor imagery (MI) if combined with physical practice, but detailed descriptions of MI training session (MITS) elements and temporal parameters are lacking. The aim of this review was to identify the characteristics of a successful MITS and compare these for different disciplines, MI session types, task focus, age, gender and MI modification during intervention.</p> <p>Methods</p> <p>An extended systematic literature search using 24 databases was performed for five disciplines: Education, Medicine, Music, Psychology and Sports. References that described an MI intervention that focused on motor skills, performance or strength improvement were included. Information describing 17 MITS elements was extracted based on the PETTLEP (physical, environment, timing, task, learning, emotion, perspective) approach. Seven elements describing the MITS temporal parameters were calculated: study duration, intervention duration, MITS duration, total MITS count, MITS per week, MI trials per MITS and total MI training time.</p> <p>Results</p> <p>Both independent reviewers found 96% congruity, which was tested on a random sample of 20% of all references. After selection, 133 studies reporting 141 MI interventions were included. The locations of the MITS and position of the participants during MI were task-specific. Participants received acoustic detailed MI instructions, which were mostly standardised and live. During MI practice, participants kept their eyes closed. MI training was performed from an internal perspective with a kinaesthetic mode. Changes in MI content, duration and dosage were reported in 31 MI interventions. Familiarisation sessions before the start of the MI intervention were mentioned in 17 reports. MI interventions focused with decreasing relevance on motor-, cognitive- and strength-focused tasks. Average study intervention lasted 34 days, with participants practicing MI on average three times per week for 17 minutes, with 34 MI trials. Average total MI time was 178 minutes including 13 MITS. Reporting rate varied between 25.5% and 95.5%.</p> <p>Conclusions</p> <p>MITS elements of successful interventions were individual, supervised and non-directed sessions, added after physical practice. Successful design characteristics were dominant in the Psychology literature, in interventions focusing on motor and strength-related tasks, in interventions with participants aged 20 to 29 years old, and in MI interventions including participants of both genders. Systematic searching of the MI literature was constrained by the lack of a defined MeSH term.</p

    A Next-Generation Liquid Xenon Observatory for Dark Matter and Neutrino Physics

    Get PDF
    The nature of dark matter and properties of neutrinos are among the mostpressing issues in contemporary particle physics. The dual-phase xenontime-projection chamber is the leading technology to cover the availableparameter space for Weakly Interacting Massive Particles (WIMPs), whilefeaturing extensive sensitivity to many alternative dark matter candidates.These detectors can also study neutrinos through neutrinoless double-beta decayand through a variety of astrophysical sources. A next-generation xenon-baseddetector will therefore be a true multi-purpose observatory to significantlyadvance particle physics, nuclear physics, astrophysics, solar physics, andcosmology. This review article presents the science cases for such a detector.<br

    A next-generation liquid xenon observatory for dark matter and neutrino physics

    Get PDF
    The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for weakly interacting massive particles, while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector

    GUTs, hybrid topological defects, and gravitational waves

    No full text

    Dark Radiation Constraints on Heavy QCD Axions

    No full text
    The naturalness problem of PQ symmetry motivates study of the heavy QCD axion, with masses ma>m_a > 1 MeV generated at scales above the QCD scale, and low values of the PQ symmetry breaking scale, faf_a. We compute the abundance of such axions in a model-independent way, assuming only that they freeze-out after reheating from inflation, and are not subsequently diluted by new physics. If these axions decay between neutrino decoupling and the last scatter era of the Cosmic Microwave Background (CMB), they dilute the neutrinos and their abundance is constrained by CMB measurements of the energy density in dark radiation, NeffN_{\rm eff}. We accurately compute this bound using a numerical code to evolve the axion momentum distribution, including many key processes and effects previously ignored. We assume that the only relevant axion decays are to final states involving Standard Model particles. We determine regions of (ma,fa)(m_a, f_a) that will give a signal in NeffN_{\rm eff} at CMB Stage 4 experiments. We similarly compute the NeffN_{\rm eff} bound and CMB Stage 4 signal for heavy axions that can decay to light mirror photons. Finally, we compute the bounds on heavy axions with mass below 1 MeV that decay after the era of CMB last scatter, from their contribution to cold or hot dark matter or NeffN_{\rm eff} at this era

    A Heavy QCD Axion and the Mirror World

    No full text
    We study the mirror world with dark matter arising from the thermal freeze-out of the lightest, stable mirror particle -- the mirror electron. The dark matter abundance is achieved for mirror electrons of mass 225 GeV, fixing the mirror electroweak scale near 10810^8 GeV. This highly predictive scenario is realized by an axion that acts as a portal between the two sectors through its coupling to the QCD and mirror QCD sectors. The axion is more massive than the standard QCD axion due to additional contributions from mirror strong dynamics. Still, the strong CP problem is solved by this "heavy" axion due to the alignment of the QCD and mirror QCD potentials. Mirror entropy is transferred into the Standard Model sector via the axion portal, which alleviates overproduction of dark radiation from mirror glueball decays. This mirror scenario has a variety of signals: (1) primordial gravitational waves from the first-order mirror QCD phase transition occurring at a temperature near 35 GeV, (2) effects on large-scale structure from dark matter self-interactions from mirror QED, (3) dark radiation affecting the cosmic microwave background, and (4) the rare kaon decay, K+→(π++axion)K^+ \rightarrow (\pi^+ + \rm{axion}). The first two signals do not depend on any fundamental free parameters of the theory while the latter two depend on a single free parameter, the axion decay constant
    corecore