7 research outputs found

    Binding of Brucella protein, Bp26, to select extracellular matrix molecules

    Get PDF
    Background: Brucella is a facultative intracellular pathogen responsible for zoonotic disease brucellosis. Little is known about the molecular basis of Brucella adherence to host cells. In the present study, the possible role of Bp26 protein as an adhesin was explored. The ability of Brucella protein Bp26 to bind to extracellular matrix (ECM) proteins was determined by enzyme-linked immunosorbent assay (ELISA) and biolayer interferometry (BLI). Results: ELISA experiments showed that Bp26 bound in a dose-dependent manner to both immobilized type I collagen and vitronectin. Bp26 bound weakly to soluble fibronectin but did not bind to immobilized fibronectin. No binding to laminin was detected. Biolayer interferometry showed high binding affinity of Bp26 to immobilized type I collagen and no binding to fibronectin or laminin. Mapping of Bp26 antigenic epitopes by biotinylated overlapping peptides spanning the entire sequence of Bp26 using anti Bp26 mouse serum led to the identification of five linear epitopes. Collagen and vitronectin bound to peptides from several regions of Bp26, with many of the binding sites for the ligands overlapping. The strongest binding for anti-Bp26 mouse serum, collagen and vitronectin was to the peptides at the C-terminus of Bp26. Fibronectin did not bind to any of the peptides, although it bound to the whole Bp26 protein. Conclusions: Our results highlight the possible role of Bp26 protein in the adhesion process of Brucella to host cells through ECM components. This study revealed that Bp26 binds to both immobilized and soluble type I collagen and vitronectin. It also binds to soluble but not immobilized fibronectin. However, Bp26 does not bind to laminin. These are novel findings that offer insight into understanding the interplay between Brucella and host target cells, which may aid in future identification of a new target for diagnosis and/or vaccine development and prevention of brucellosis

    Cloning, Nucleotide Sequence, and Expression of the Brucella melitensis sucB Gene Coding for an Immunogenic Dihydrolipoamide Succinyltransferase Homologous Protein

    No full text
    The Brucella melitensis sucB gene encoding the dihydrolipoamide succinyltransferase (E2o) enzyme (previously identified as an immunogenic protein in infected sheep) was cloned and sequenced. The amino acid sequence predicted from the cloned gene revealed 88.8 and 51.2% identity to the dihydrolipoamide succinyltransferase SucB protein from Brucella abortus and Escherichia coli, respectively. Sera from naturally infected sheep showed antibody reactivity against the recombinant SucB protein

    Potential developmental neurotoxicity of pesticides used in Europe

    No full text
    corecore