45 research outputs found

    Glass Electrode Calibration for Use in the Voltammetric Determination of Stability Constants under Extreme Acidic Conditions

    Get PDF
    A glass electrode (GE) can be successfully employed to measure pH in the study of metal-ligand equilibria by voltammetry at extremely low pH (between 0 and 2); two consecutive strong acid–strong base titrations involving different base concentrations (recommended to avoid corrosion of the GE in very basic solutions) are best suited to establish the response parameters of a GE. A novel approach of using a combined linear and binomial GE calibration was developed; this procedure allows measurements between pH 0 and 2 with uncertainty better than ±0.01 pH unit. From an extensive error analysis, it has been established that the uncertainties of about ±0.5 mV in the response slope and ±1.3 mV in E°’ might result in an absolute error in pH of about 0.02 which should not generate errors larger than 0.3% in optimized stability constants (as logK values) determined by voltammetry at extremely low pH. A test of GE suitability for the study of metal complexes by voltammetry is also proposed; it should be implemented only for suspect electrodes that show response parameters outside the limits recommended in this work.Keywords: Glass electrode calibration, glass electrode performance, use of GE in highly acidic media, metal-ligand equilibria studies, potentiometry, voltammetryPDF and Supplementry file attache

    Analysis of the Reaction Rate Coefficients for Slow Bimolecular Chemical Reactions

    Full text link
    Simple bimolecular reactions A1+A2A3+A4A_1+A_2\rightleftharpoons A_3+A_4 are analyzed within the framework of the Boltzmann equation in the initial stage of a chemical reaction with the system far from chemical equilibrium. The Chapman-Enskog methodology is applied to determine the coefficients of the expansion of the distribution functions in terms of Sonine polynomials for peculiar molecular velocities. The results are applied to the reaction H2+ClHCl+HH_2+Cl\rightleftharpoons HCl+H, and the influence of the non-Maxwellian distribution and of the activation-energy dependent reactive cross sections upon the forward and reverse reaction rate coefficients are discussed.Comment: 11 pages, 5 figures, to appear in vol.42 of the Brazilian Journal of Physic

    On modified simple reacting spheres kinetic model for chemically reactive gases

    Get PDF
    Versão dos autores para esta publicação.We consider the modiffed simple reacting spheres (MSRS) kinetic model that, in addition to the conservation of energy and momentum, also preserves the angular momentum in the collisional processes. In contrast to the line-of-center models or chemical reactive models considered in [1], in the MSRS (SRS) kinetic models, the microscopic reversibility (detailed balance) can be easily shown to be satisfied, and thus all mathematical aspects of the model can be fully justi ed. In the MSRS model, the molecules behave as if they were single mass points with two internal states. Collisions may alter the internal states of the molecules, and this occurs when the kinetic energy associated with the reactive motion exceeds the activation energy. Reactive and non-reactive collision events are considered to be hard spheres-like. We consider a four component mixture A, B, A*, B*, in which the chemical reactions are of the type A + B = A* + B*, with A* and B* being distinct species from A and B. We provide fundamental physical and mathematical properties of the MSRS model, concerning the consistency of the model, the entropy inequality for the reactive system, the characterization of the equilibrium solutions, the macroscopic setting of the model and the spatially homogeneous evolution. Moreover, we show that the MSRS kinetic model reduces to the previously considered SRS model (e.g., [2], [3]) if the reduced masses of the reacting pairs are the same before and after collisions, and state in the Appendix the more important properties of the SRS system.Fundação para a Ciência e a Tecnologi

    Nonequilibrium thermodynamics and energy efficiency in weight loss diets

    Get PDF
    Carbohydrate restriction as a strategy for control of obesity is based on two effects: a behavioral effect, spontaneous reduction in caloric intake and a metabolic effect, an apparent reduction in energy efficiency, greater weight loss per calorie consumed. Variable energy efficiency is established in many contexts (hormonal imbalance, weight regain and knock-out experiments in animal models), but in the area of the effect of macronutrient composition on weight loss, controversy remains. Resistance to the idea comes from a perception that variable weight loss on isocaloric diets would somehow violate the laws of thermodynamics, that is, only caloric intake is important ("a calorie is a calorie"). Previous explanations of how the phenomenon occurs, based on equilibrium thermodynamics, emphasized the inefficiencies introduced by substrate cycling and requirements for increased gluconeogenesis. Living systems, however, are maintained far from equilibrium, and metabolism is controlled by the regulation of the rates of enzymatic reactions. The principles of nonequilibrium thermodynamics which emphasize kinetic fluxes as well as thermodynamic forces should therefore also be considered

    Interaction between a bisphosphonate, tiludronate, and biomimetic nanocrystalline apatites.

    Get PDF
    Bisphosphonates (BPs) are well established as successful antiresorptive agents for the prevention and treatment of bone diseases such as osteoporosis and Paget's disease. The aim of this work was to clarify the reaction mechanisms between a BP molecule, tiludronate, and the nanocrystalline apatite surface. The adsorption of tiludronate on well characterized synthetic biomimetic nanocrystalline apatites with homogeneous but different compositions and surface characteristics was investigated to determine the effect of the nanocrystalline apatite substrate on the adsorption behavior. The results show that the adsorption of tiludronate on nanocrystalline biomimetic apatite surfaces varies over a large range. The most immature apatitic samples exhibited the highest affinity and the greatest amount adsorbed at saturation. Maturation of the nanocrystals induces a decrease of these values. The amount of phosphate ion released per adsorbed BP molecule varied, depending on the nanocrystalline substrate considered. The adsorption mechanism, although associated with a release of phosphate ions, cannot be considered as a simple ion exchange process involving one or two phosphate ions on the surface. A two-step process is proposed consisting of a surface binding of BP groups to calcium ions associated with a proton release inducing the protonation of surface orthophosphate ions and their eventual solubilization

    Lead(II) coordination polymers driven by pyridine-hydrazine donors : from anion-guided self-assembly to structural features

    Get PDF
    In this work, we report extensive experimental and theoretical investigations on a new series of PbII coordination polymers exhibiting extended supramolecular architectures, namely [Pb2(LI)(NCS)4]n (1), [Pb(HLII)I2]n (2), [Pb(LIII)I]n (3) and [Pb(HLIV)(NO3)2]n·nMeOH (4), which were self-assembled from different PbII salts and various pyridine-hydrazine based linkers, namely 1,2-bis(pyridin-3-ylmethylene)hydrazine (LI), (pyridin-4-ylmethylene)isonicotinohydrazide (HLII), 1-(pyridin-2-yl)ethylidenenicotinohydrazide (HLIII) and phenyl(pyridin-2-yl)methylenenicotinohydrazide (HLIV), respectively. It is recognized that the origin of self-assembling is fundamentally rooted in a dual donor (6s2/6p0 hybridized lone electron pair) and electrophilic behaviour of PbII. This allows production of extended topologies from a 1D polymeric chain in 4 through a 2D layer in 2 to the 3D frameworks in 1 and 3, predominantly due to the cooperative action of both covalent and non-covalent tetrel interactions of the overall type Pb-X (X = O, N, S, I). Counterintuitively, the latter, seemingly weak interactions, have appeared to be even stronger than the typical covalent bonds due to the presence of a bunch of supportive London dispersion dominated contacts: ππ, Lpπ, C-HO, C-HI, C-HH-C as well as more typical mainly electrostatically driven N-HO or N/O-HO hydrogen bonds. It is revealed that the constituting generally strong tetrel type Pb-X (X = O, N, S, I) bonds, though dominated by a classic Coulomb term, are therefore characterized by a very important London dispersion constituent, extremely strong relativistic effects and the two way dative-covalent Pb ↔ X electron charge delocalization contribution as revealed by the Extended Transition State Natural Orbital for Chemical Valence (ETS-NOCV) charge and energy decomposition scheme. It unravels that the pyridine-hydrazine linkers are also excellent London dispersion donors, and that together with the donor-acceptor properties of the heavy (relativistic) PbII atoms and nucleophilic counterions lead to extended self-assembling of 1-4

    Application of Artificial Neural Networks for Analysis of Highly Overlapped and Disturbed Differential Pulse Polarographic Peaks in the Region of Hydrogen Evolution

    Get PDF
    Multivariate calibration based on a suitable experimental design (ED) and soft modelling with artificial neural networks (ANNs) is proposed for quantitative analysis of highly overlapped and disturbed differential pulse polarographic (DPP) peaks that occur in the region of a hydrogen evolution. It is demonstrated that analysis of mixtures, even if some of the constituents undergo an irreversible reduction and the background current varies significantly with a composition of a sample, can be quantified with reasonable accuracy using a combination of ED and ANNs. Examples of DPP examination of ZnII and CrIII mixtures and/or simultaneous determination of metal ions and a strong acid concentration are presented. The possibility of an on-line monitoring is suggested. It is demonstrated that standard hard model based refinement procedures perform much worse than ANNs combined with ED and, in principle, proved to be unsuitable for the purpose. South African Journal of Chemistry Vol.53(3) 2000: 213-23

    Stability Constants of the Inclusion Complexes of ß-Cyclodextrin with Various Adamantane Derivatives. A UV-Vis Study

    Get PDF
    The stability constants for the inclusion complexes of ß-cyclodextrin (ß-CD) with various adamantane derivatives (ADA), namely the amantadinium (AM), rimantadinium (RIM), and memantinium (MEM) cations have been determined by UV-Vis spectrophotometry. All experiments have been performed at a pH of 1.7 and 25 º C on aqueous solutions adjusted to an ionic strength of 0.05 M (Na+, H+)ClO4. The competitive binding method has been used whereby methyl orange (MO) is first encapsulated by ß-CD and is then substituted by ADA. It has been shown that the derivatives studied form host-guest type complexes. The calculated stability constants, reported as log K1, were estimated to be 3.9 ± 0.1, 5.1 ± 0.2 and 3.3 ± 0.1, for AM, RIM and MEM, respectively. The factors that govern the strength of binding ADA with ß-CD have been discussed and an attempt was made to rationalise the variation in the established stability constants for the ADA-ß-CD complexes. General experimental conditions required for the determination of the stability constants of ADA with ß-CD with the use of MO as an auxiliary agent were evaluated. The optimised experimental conditions are recommended. It has been concluded that MO, even though commonly used in this type of study, does not meet the optimal and recommended conditions. South African Journal of Chemistry Vol.54 2001: 84-10
    corecore