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Abstract

We consider the modified simple reacting spheres (MSRS) kinetic model that, in addition to the
conservation of energy and momentum, also preserves the angular momentum in the collisional
processes. In contrast to the line-of-center models or chemical reactive models considered in [1], in
the MSRS (SRS) kinetic models, the microscopic reversibility (detailed balance) can be easily shown
to be satisfied, and thus all mathematical aspects of the model can be fully justified. In the MSRS
model, the molecules behave as if they were single mass points with two internal states. Collisions
may alter the internal states of the molecules, and this occurs when the kinetic energy associated
with the reactive motion exceeds the activation energy. Reactive and non-reactive collision events
are considered to be hard spheres-like. We consider a four component mixture A, B, A∗, B∗, in
which the chemical reactions are of the type A + B 
 A∗ + B∗, with A∗ and B∗ being distinct
species from A and B. We provide fundamental physical and mathematical properties of the MSRS
model, concerning the consistency of the model, the entropy inequality for the reactive system, the
characterization of the equilibrium solutions, the macroscopic setting of the model and the spatially
homogeneous evolution. Moreover, we show that the MSRS kinetic model reduces to the previously
considered SRS model (e.g., [2], [3]) if the reduced masses of the reacting pairs are the same before
and after collisions, and state in the Appendix the more important properties of the SRS system.
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1 Introduction

The investigation of chemically reactive mixtures is fundamental in several practical applications, such
as combustion engineering, chemical reactors and many other industrial processes. This has motivated a
wide range of research works concerning theoretical and formal studies as well as physical applications
and numerical simulations. In particular, in the frame of the kinetic theory of chemically reacting gases,
several contributions have been advanced, after the pioneering papers by Prigogine and collaborators [4],
[5], and further works by Present [6], Ross and Mazur [7], Shizgal and Karplus [8], and many others.
Besides theoretical and formal studies which in particular deal with existence theory [9], [10], [11], there
exists a rather vast bibliography oriented to other connected relevant topics, such as the modeling of
multicomponent reactive flows [1], [12], [13], [14], analysis of transport properties [15], [16], investigation
of the non-equilibrium effects induced by the chemical reactions [17], [18], construction of generalized
BGK theories [15], [19], [20], as well as applications to combustion [21], just to cite a few of them.

In this work, we are interested in the simple reacting spheres (SRS) model of the kinetic theory for
chemically reacting gases, that has been developed by N. Xystris, J. S. Dahler [2] and further advanced
by J. S. Dahler and L. Qin in [3], [22]. Mathematical aspects of SRS, including global existence in a
dilute regime, were studied in [10] and [11]. In [23] the SRS model was compared to a model of chemical
reacting gases proposed in [1]. The authors in [11], [24], and [25] studied linearized versions of SRS,
including kernel representations of the linear SRS and its compactness.

In the SRS kinetic theory, both elastic and reactive collisions are of hard-sphere type and reactions do
not modify the diameters of the molecules. As a consequence, the micro-reversibility principle reduces to
a simple condition, when compared to other kinetic theories available in literature for chemically reactive
mixtures (see, for example, [1], [12], [13], [14], [16] and references cited therein). Moreover, the SRS
theory incorporates other important aspects that renders the SRS kinetic model quite interesting. For
example, reactive and elastic collisions are treated in equal pair, contrary to other models that treat the
reactive terms as a small perturbation of the elastic ones (see, for example, [4], [5] and [8]). Therefore,
the SRS kinetic theory results to be appropriate to deal with processes in which chemical reactions play
an important role. Additionally, the SRS kinetic theory, if considered in its general formulation, referes
to moderately dense gas systems, and when the chemical reactions are neglected, the model reduces to
the revised Enskog theory.

Having all these aspects in mind, our main motivation in the present work is to extend the SRS kinetic
theory to other physically relevant situations. In particular, starting from the ideas suggested in [3], we
consider the modified SRS (MSRS) model, that adds the additional conservation of angular momentum
into the collisional process. The SRS model includes conservation of both the total energy and the
linear momentum, but does not include conservation of the angular momentum. For all the above
mentioned aspects, the MSRS model turns out to be a bone fide kinetic model for reactive mixtures with
all mathematical properties built in the model. Finally, we want to point out that both MSRS (SRS)
kinetic models are derived directly from the pseudo-Liouville equations for the corresponding hard-sphere
reactive dynamics [22].

In this work, we provide fundamental physical and mathematical properties of the dilute gas regime
MSRS model that will be needed in our subsequent work. As a forthcoming work, we plan to investigate
different problems associated to the MSRS model, namely existence of renormalized solutions, properties
of the linearized kinetic system and kernel representation of the collisional operators, as well as the
transport properties (i.e., computations of transport coefficients), and non-equilibrium effects induced by
the chemical reaction.

This article is organized as follows. In Section 2 we derive the MSRS kinetic model, and study in detail
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the collisional dynamics. In Section 3, we consider the dilute regime of the MSRS model and state a
fundamental property that will be used in the following sections to prove the mathematical and physical
consistency of the model. Section 4 is devoted to the derivation of the conservation laws of the MSRS
system, and Section 5 deals with the connection of the MSRS model to the macroscopic framework in
terms of hydrodynamic balance equations. In Section 6 we provide the entropy identity, characterize
equilibrium solutions and study the tendency of the mixture to approach the equilibrium. In Section 7
we deal with the spatially homogeneous evolution of the mixture in terms of the macroscopic equations
and prove the uniqueness of the equilibrium state. Finally, in Section 8, we include an Appendix, where
we state the important properties of the SRS system as a particular case of the MSRS model.

2 The MSRS kinetic model

In the MSRS model, the molecules behave as if they were single mass points with two internal states.
Collisions may alter the internal states: this occurs when the kinetic energy associated with the reactive
motion exceeds the activation energy. Reactive and non-reactive collision events are considered to be
hard spheres-like. In a four component mixture A, B, A∗, B∗, the chemical reactions are of the type

A+B 
 A∗ +B∗. (1)

Here, A∗ and B∗ are distinct species from A and B. We use the indices 1, 2, 3, and 4 for the particles
A, B, A∗, and B∗, respectively. Furthermore, if mi and di denote the mass and the diameter of the i-th
particle, i = 1, . . . , 4, the reactions take place when the reactive particles are separated by a distance
σ12 = 1

2
(d1 + d2) or σ34 = 1

2
(d3 + d4). The conservation of mass has the form

m1 +m2 = m3 +m4 = M, (2)

2.1 Elastic encounters

In the case of elastic collisions between a pair of particles from species i and s, the initial velocities v, w
take post–collisional values

v′ = v − 2
µis
mi

ε〈ε, v − w〉, w′ = w + 2
µis
ms

ε〈ε, v − w〉. (3)

Here, 〈· , ·〉 is the inner product in R3, ε is a vector along the line passing through the centers of the
spheres at the moment of impact, i.e.,

ε ∈ S2
+ = {ε̃ ∈ R3 : |ε̃| = 1, 〈ε̃, v − w〉 ≥ 0}, (4)

and
µis =

mims

mi +ms

(5)

is the reduced mass of the colliding pair.
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2.2 Reactive encounters

For the reactive collision between particles of species i and s to occur (i, s = 1, . . . , 4), the kinetic energy
associated with the relative motion along the line of centers must exceed the activation energy γi,

(1/2)µis
(
〈ε, v − w〉

)2 ≥ γi. (6)

In order to derive the post reactive expressions for velocities v and w, we follow the arguments given in [3]
for SRS model (see also the Appendix) with one difference that, in addition to assuming the conservations
of momentum and total energy

m1v +m2w = m3v
‡ +m4w

‡

m1v
2 +m2w

2 = m3v
‡2 +m4w

‡2 + 2Eabs,
(7)

we also want to incorporate conservation of the angular momentum:

µ12 [ε× (v − w)] = µ34

[
ε× (v‡ − w‡)

]
. (8)

Thus, we replace (122) in the Appendix by√
µ34

2
(v‡ − w‡) =

√
µ12

µ34

√
µ12

2
(v − w) + Λ′ε, (9)

where

Λ′ = −
√
µ12

µ34

〈√
µ12

2
(v − w), ε

〉
+

√√√√µ12

µ34

〈√
µ12

2
(v − w), ε

〉2

−

[
Eabs +

(
µ12

µ34

− 1

)(√
µ12

2
(v − w)

)2
]
.

(10)
And finally, in the case of the reaction A+B → A∗ +B∗, the post-reactive values of velocities v, w are:

v‡ =
1

M

[
m1v +m2w +m4

µ12

µ34

{
(v − w)− ε〈ε, v − w〉

}
+m4ε

√
µ12

µ34

α−
]
, (11)

w‡ =
1

M

[
m1v +m2w −m3

µ12

µ34

{
(v − w)− ε〈ε, v − w〉

}
−m3ε

√
µ12

µ34

α−
]
, (12)

with

α− =

√
µ12

µ34

(
〈ε, v − w〉

)2 − 2Eabs
µ12

−
(
µ12

µ34

− 1

)
(v − w)2 , (13)

and Eabs the energy absorbed by the internal degrees of freedom. The absorbed energy Eabs has the
property Eabs = E3 +E4−E1−E2 > 0, where Ei > 0, i = 1, . . . 4, is the energy of i-th particle associated
with its internal degrees of freedom. The activation energies γ1, γ2 for A and B are chosen to satisfy
γ1 ≥ Eabs > 0, and by symmetry, γ2 = γ1. Also γ3 = γ1 − Eabs and γ4 = γ3.

From (11)-(12), one obtains

1

2
µ34(〈ε, v‡ − w‡〉)2 − γ3 =

(
µ12

µ34

)[
1

2
µ12

(
〈ε, v − w〉

)2 − γ1

]
−
(
µ12

µ34

− 1

)[
1

2
µ12(v − w)2 − γ1

]
. (14)
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If 1
2
µ12

(
〈ε, v − w〉

)2 − γ1 ≥ 0 then (14) implies that 1
2
µ34(〈ε, v‡ − w‡〉)2 − γ3 ≥ 0 if µ12

µ34
≤ 1. If however,

µ12
µ34

> 1, then 1
2
µ34(〈ε, v‡ − w‡〉)2 − γ3 ≥ 0 if and only if

1

2
µ12

(
〈ε, v − w〉

)2 ≥ γ1 +

(
1− µ34

µ12

)[
1

2
µ12(v − w)2 − γ1

]
. (15)

Thus, (15) implies that the reaction A+B → A∗ +B∗ takes place when

1

2
µ12

(
〈ε, v − w〉

)2 ≥ max

{
γ1, γ1 +

(
1− µ34

µ12

)[
1

2
µ12(v − w)2 − γ1

]}
. (16)

Additionally, for 1
2
µ12

(
〈ε, v − w〉

)2
satisfying inequality (16), α− in (13) is well defined since

µ12

[
µ12

µ34

(
〈ε, v − w〉

)2 − 2Eabs
µ12

−
(
µ12

µ34

− 1

)
(v − w)2

]
= µ34(〈ε, v‡ − w‡〉)2. (17)

For the inverse reaction A∗+B∗ → A+B, we proceed in a similar way and obtain the following expressions
for v† and w†

v† =
1

M

[
m3v +m4w +m2

µ34

µ12

{
(v − w)− ε〈ε, v − w〉

}
+m2ε

√
µ34

µ12

α+

]
, (18)

w† =
1

M

[
m3v +m4w −m1

µ34

µ12

{
(v − w)− ε〈ε, v − w〉

}
−m1ε

√
µ34

µ12

α+

]
, (19)

with

α+ =

√
µ34

µ12

(
〈ε, v − w〉

)2
+

2Eabs
µ34

−
(
µ34

µ12

− 1

)
(v − w)2. (20)

From (18)-(19), one obtains

1

2
µ12(〈ε, v† − w†〉)2 − γ1 =

(
µ34

µ12

)[
1

2
µ34

(
〈ε, v − w〉

)2 − γ3

]
−
(
µ34

µ12

− 1

)[
1

2
µ34(v − w)2 − γ3

]
. (21)

Now, if 1
2
µ34

(
〈ε, v − w〉

)2 − γ3 ≥ 0 then (21) implies that 1
2
µ12(〈ε, v† − w†〉)2 − γ1 ≥ 0 if µ34

µ12
≤ 1. If

however, µ34
µ12

> 1 then 1
2
µ12(〈ε, v† − w†〉)2 − γ1 ≥ 0 if and only if

1

2
µ34

(
〈ε, v − w〉

)2 ≥ γ3 +

(
1− µ12

µ34

)[
1

2
µ34(v − w)2 − γ3

]
. (22)

Thus, (22) implies that the reaction A∗ +B∗ → A+B takes place when

1

2
µ34

(
〈ε, v − w〉

)2 ≥ max

{
γ3, γ3 +

(
1− µ12

µ34

)[
1

2
µ34(v − w)2 − γ3

]}
. (23)

Additionally, for 1
2
µ34

(
〈ε, v − w〉

)2
satisfying inequality (23), α+ is well defined since

µ34

[
µ34

µ12

(
〈ε, v − w〉

)2
+

2Eabs
µ34

−
(
µ34

µ12

− 1

)
(v − w)2

]
= µ12(〈ε, v† − w†〉)2. (24)
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Post- and pre-collisional velocities of the reactive pairs satisfy conservation of the momentum

m1v +m2w = m3v
‡ +m4w

‡, m3v +m4w = m1v
† +m2w

†. (25)

A part of kinetic energy is exchanged with the energy absorbed by the internal states. The following
equalities hold:

m1v
2 +m2w

2 = m3v
‡2 +m4w

‡2 + 2Eabs,

m3v
2 +m4w

2 = m1v
†2 +m2w

†2 − 2Eabs.
(26)

Finally, using expressions (11)-(12) for the post-reactive velocities, we obtain

v‡ − w‡ =
µ12

µ34

[v − w − ε〈ε, v − w〉] + ε

√
µ12

µ34

α−, (27)

and thus the angular momentum (8) is conserved during the reactive collisional process.

An analogical formula relationship holds between v†, w†, v, and w: µ34 [ε× (v − w)] = µ12

[
ε× (v† − w†)

]
.

We recall that in the SRS kinetic model (see the Appendix) the post-reactive velocities were given by

v‡ =
1

M

[
m1v +m2w +m4

√
µ12

µ34

{
(v − w)− ε〈ε, v − w〉+ εα−SRS

}]
, (28)

w‡ =
1

M

[
m1v +m2w −m3

√
µ12

µ34

{
(v − w)− ε〈ε, v − w〉+ εα−SRS

}]
, (29)

with α−SRS =
√(
〈ε, v − w〉

)2 − 2Eabs/µ12. The corresponding expression for the relative velocities is

v‡ − w‡ =

√
µ12

µ34

{
v − w − ε

[
〈ε, v − w〉 − α−SRS

]}
, (30)

which shows that in the SRS kinetic model, the angular momentum is not conserved during the reactive
collisional process, unless µ12 = µ34.

Furthermore, we observe that MSRS kinetic model reduces to the SRS model when µ12 = µ34.

2.3 The system of equations

For i = 1, 2, 3, 4, fi(t, x, v) denotes the one-particle distribution function of the ith component of the
reactive mixture, where (t, x, v) ∈ R+

0 ×Ω×R3, with Ω ⊆ R3 being the spatial domain of the gas mixture.
Functions fi(t, x, v), which change in time due to free streaming and collisions (elastic and reactive),
represent, at time t, the number densities of particles of species i at point x with velocity v.

The MSRS kinetic system has the form

∂fi
∂t

+ v
∂fi
∂x

= JEi + JRi , i = 1, 2, 3, 4, (31)

where JEi is the non-reactive (hard-sphere) collision operator

JEi =
4∑
s=1

{
σ2
is

∫∫
R3×S2+

[
f

(2)
is (t, x, v′, x− σisε, w′)− f (2)

is (t, x, v, x+ σisε, w)

]
〈ε, v − w〉 dεdw

}

− βijσ2
ij

∫∫
R3×S2+

[
f

(2)
ij (t, x, v′, x−σijε, w′)−f (2)

ij (t, x, v, x+σijε, w)

]
Θ(〈ε, v−w〉−Γij)〈ε, v−w〉dεdw, (32)
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with S2
+ = {ε̃ ∈ R3 : |ε̃| = 1, 〈ε̃, v − w〉 ≥ 0}, and f

(2)
is (t, x1, v1, x2, v2) approximates the density of pairs

of particles in collisional configurations. The second term in (32), with βij in front of it, singles out
those pre-collisional states that are energetic enough to result in the reaction, and thus preventing double
counting of the events in the collisional integrals. In the case when βij = 0, for i, j = 1, . . . , 4, (31)-(32)
reduces to the first BBGKY-hierarchy system for 4-species inert mixtures.

For i = 1, 2, 3, 4, the reactive terms are

JRi = βijσ
2
ij

∫∫
R3×S2+

[(
µij
µkl

)3

f
(2)
kl (t, x, v�ij , x−σijε, w�ij)−f

(2)
ij (t, x, v, x+σijε, w)

]
Θ (〈ε, v − w〉 − Γij) 〈ε, v−w〉dεdw.

(33)

Here, 0 ≤ βij ≤ 1 are the steric factors, Γij =

√
max

{
2γi/µij, 2γi/µij +

(
1− µkl

µij

)
[(v − w)2 − 2γi/µij]

}
and Θ is the Heaviside step function. The pairs of post-reactive velocities are (v�ij , w

�
ij) = (v‡, w‡) for

i, j = 1, 2, given in (11)-(12), and (v�ij , w
�
ij) = (v†, w†) for i, j = 3, 4, given in (18)-(19). Pairs of indices

(i, j) and (k, l) are from the set of quadruples (i, j, k, l):

{(1, 2, 3, 4), (2, 1, 4, 3), (3, 4, 1, 2), (4, 3, 2, 1)}. (34)

Finally, we observe that in view of (15)-(16) and (22)-(23), the Heaviside functions Θ(〈ε, v−w〉−Γij)
appearing in (32)-(33) can be replaced by the product of the symmetric pair of Heaviside functions:

Θ
(
〈ε, v − w〉 − Γ∗ij

)
Θ
(
〈ε, v�ij − w�ij〉 − Γ∗kl

)
, (35)

with Γ∗ij =
√

2γi/µij and the pairs of indices (i, j) and (k, l) are from the set of quadruples given in (34).
Therefore, (32) becomes

JEi =
4∑
s=1

{
σ2
is

∫∫
R3×S2+

[
f

(2)
is (t, x, v′, x− σisε, w′)− f (2)

is (t, x, v, x+ σisε, w)

]
〈ε, v − w〉 dεdw

}

− βijσ2
ij

∫∫
R3×S2+

[
f

(2)
ij (t, x, v′, x− σijε, w′)− f (2)

ij (t, x, v, x+ σijε, w)

]
×

Θ
(
〈ε, v − w〉 − Γ∗ij

)
Θ
(
〈ε, v�ij − w�ij〉 − Γ∗kl

)
〈ε, v − w〉dεdw,

(36)

and (33) becomes

JRi =βijσ
2
ij

∫∫
R3×S2+

[(
µij
µkl

)3

f
(2)
kl (t, x, v�ij , x−σijε, w�ij)− f

(2)
ij (t, x, v, x+σijε, w)

]
×

Θ
(
〈ε, v − w〉 − Γ∗ij

)
Θ
(
〈ε, v�ij − w�ij〉 − Γ∗kl

)
〈ε, v − w〉dεdw.

(37)

Lemma 2.1.

(1) For i, s = 1, 2, 3, 4, the inverse velocities to v′, w′ are given by

v = v′ − 2
µis
mi

ε〈ε, v′ − w′〉, w = w′ + 2
µis
ms

ε〈ε, v′ − w′〉. (38)

For fixed ε, the Jacobian of the transformation (v, w) 7→ (v′, w′) is equal to −1. Furthermore, 〈ε, v′−w′〉 =
−〈ε, v − w〉,
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(2) The inverse velocities to v‡, w‡ are given by

v =
1

M

[
m3v

‡ +m4w
‡ +m2

µ34

µ12

{
(v‡ − w‡)− ε〈ε, v‡ − w‡〉

}
+m2ε

√
µ34

µ12

α+

]
, (39)

w =
1

M

[
m3v

‡ +m4w
‡ −m1

µ34

µ12

{
(v‡ − w‡)− ε〈ε, v‡ − w‡〉

}
−m1ε

√
µ34

µ12

α+

]
, (40)

and the inverse velocities to v†, w† are given by

v =
1

M

[
m1v

† +m2w
† +m4

µ12

µ34

{
(v† − w†)− ε〈ε, v† − w†〉

}
+m4ε

√
µ12

µ34

α−
]
, (41)

w =
1

M

[
m1v

† +m2w
† −m3

µ12

µ34

{
(v† − w†)− ε〈ε, v† − w†〉

}
−m3ε

√
µ12

µ34

α−
]
. (42)

(3) For fixed ε, the Jacobians of the transformations (v, w) 7→ (v†, w†) and (v, w) 7→ (v‡, w‡) are given by(
µ34

µ12

)5/2 〈ε, v − w〉
α+

and

(
µ12

µ34

)5/2 〈ε, v − w〉
α−

, (43)

respectively.

(4) Furthermore, 〈ε, v† − w†〉 =

(
µ34

µ12

)1/2

α+, 〈ε, v‡ − w‡〉 =

(
µ12

µ34

)1/2

α−.

Proof of Lemma 2.1. The proof of item (1) of Lemma 2.1 is almost the same as in the case of a single
specie Boltzmann equation and will not be given here. The identities in (39)-(42) can be checked by easy
inspection.

For the proof of item (3) of Lemma 2.1, consider the Jacobians J(v†, w†;G+
12, V

†), J(G†12, V
†;G34, V ), and

J(G34, V ; v, w) of the transformations (G+
12, V

†) 7→ (v†, w†), (G34, V ) 7→ (G†12, V
†), and (v, w) 7→ (G34, V ),

respectively, where

G34(v, w) = m3v +m4w, (the momentum of the colliding pair before reaction)

V (v, w) = v − w, (the relative velocity of the colliding pair before reaction)

G†12(v†, w†) = m1v
† +m2w

†, (the momentum of the colliding pair after reaction)

V †(v†, w†) = v† − w†. (the relative velocity of the colliding pair after reaction)

(44)

The following equality holds:

J(v†, w†; v, w) = J(v†, w†;G†12, V
†) · J(G†12, V

†;G34, V ) · J(G34, V ; v, w). (45)

Now, both (G+
12, V

†) 7→ (v†, w†) and (v, w) 7→ (G34, V ) are linear transformations with the corresponding
matrices

1
m1+m2

0 0 m2

m1+m2
0 0

0 1
m1+m2

0 0 m2

m1+m2
0

0 0 1
m1+m2

0 0 m2

m1+m2
1

m1+m2
0 0 − m1

m1+m2
0 0

0 1
m1+m2

0 0 − m1

m1+m2
0

0 0 1
m1+m2

0 0 − m1

m1+m2


and


m3 0 0 m4 0 0
0 m3 0 0 m4 0
0 0 m3 0 0 m4

1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1

 , (46)
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respectively. The determinants of the matrices in (46) are −1/(m1 +m2)3 and −(m3 +m4)3, respectively.
Therefore, the conservation of mass before and after reaction, m1 + m2 = m3 + m4, yields the identity
J(v†, w†;G†12, V

†) · J(G34, V ; v, w) = 1.

The conservation of momentum before and after reaction implies that G†12 = G34 (see, (25)), and thus,

J(G†12, V
†;G34, V )=



∂G†1
∂G1

∂G†1
∂G2

∂G†1
∂G3

∂G†1
∂V1

∂G†1
∂V2

∂G†1
∂V3

∂G†2
∂G1

∂G†2
∂G2

∂G†2
∂G3

∂G†2
∂V1

∂G†2
∂V2

∂G†2
∂V3

∂G†3
∂G1

∂G†3
∂G2

∂G†3
∂G3

∂G†3
∂V1

∂G†3
∂V2

∂G†3
∂V3

∂V †1
∂G1

∂V †1
∂G2

∂V †1
∂G3

∂V †1
∂V1

∂V †1
∂V2

∂V †1
∂V3

∂V †2
∂G1

∂V †2
∂G2

∂V †2
∂G3

∂V †2
∂V1

∂V †2
∂V2

∂V †2
∂V3

∂V †3
∂G1

∂V †3
∂G2

∂V †3
∂G3

∂V †3
∂V1

∂V †3
∂V2

∂V †3
∂V3


=



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

∂V †1
∂G1

∂V †1
∂G2

∂V †1
∂G3

∂V †1
∂V1

∂V †1
∂V2

∂V †1
∂V3

∂V †2
∂G1

∂V †2
∂G2

∂V †2
∂G3

∂V †2
∂V1

∂V †2
∂V2

∂V †2
∂V3

∂V †3
∂G1

∂V †3
∂G2

∂V †3
∂G3

∂V †3
∂V1

∂V †3
∂V2

∂V †3
∂V3


=J(V †, V ),

(47)
where we used vector notations G†12 = (G†1, G

†
2, G

†
3), G34 = (G1, G2, G3), V † = (V †1 , V

†
2 , V

†
3 ), V =

(V1, V2, V3), and with J(V †, V ) being the Jacobian of the transformation V 7→ V †:

V † =
µ34

µ12

[V − ε〈ε, V 〉] + ε

√
µ34

µ12

√
µ34

µ12

(
〈ε, V 〉

)2
+

2Eabs
µ34

−
(
µ34

µ12

− 1

)
V 2. (48)

Finally, by inspection, it is easy to check that

J(V †, V ) =

(
µ34

µ12

)5/2 〈ε, V 〉√
µ34
µ12

(
〈ε, V 〉

)2
+ 2Eabs

µ34
−
(
µ34
µ12
− 1
)
V 2

. (49)

This shows that J(v†, w†; v, w) =

(
µ34

µ12

)5/2 〈ε, v − w〉
α+

.

The proof that J(v‡, w‡; v, w) =

(
µ12

µ34

)5/2 〈ε, v − w〉
α−

follows the same arguments as above.

The two identities in item (4) of Lemma 2.1 follow from the definitions of v‡, w‡ and v†, w† given in
(11)-(12) and (18)-(19), respectively.

3 The dilute MSRS kinetic system

The system of equations (31)-(33) (or, equivalently, (31) with (36)-(37)) requires a closure relation for f
(2)
is .

In the case of moderately dense gases, the two-particle distribution function f
(2)
is is usually approximated

by
f

(2)
is (t, x1, v1, x2, v2) = g

(2)
is (x1, x2 | {ni(t, ·)}) fi(t, x1, v1)fs(t, x2, v2), (50)

where ni(t, x) =
∫
R3 fi(t, x, v)dv is the local number density of the component i and g

(2)
ij is the known

pair correlation function for a non-uniform hard-sphere system at equilibrium with the local densities
ni(t, x). The notation g

(2)
ij (x1, x2 | {ni(t, ·)}) indicates that g

(2)
ij is a functional of the local densities ni.

The closure relation (50) is employed in [3] and [22]. Additionally, in the case of non-reactive mixtures
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(βij = 0, for i = 1, . . . 4), the corresponding system of equations (31)-(32) becomes the revised Enskog
system for the mixtures [26].

In this work, we will consider only a dilute gas regime with the corresponding closure relation given by:

f
(2)
is (t, x1, v1, x2, v2) = fi(t, x1, v1)fs(t, x2, v2). (51)

The moderately dense case of MSRS model, with the closure relation (50) will be considered in our
forthcoming work.

In the dilute gas regime, the system of equations (31) with (36)-(37) takes the form:

∂fi
∂t

+ v
∂fi
∂x

= JEi + JRi , fi(0, x, v) = fi0(x, v), i = 1, . . . , 4, (x, v) ∈ Ω× R3, (52)

with

JEi =
4∑
s=1

{
σ2
is

∫∫
R3×S2+

[
fi(t, x, v

′)fs(t, x, w
′)− fi(t, x, v)fs(t, x, w)

]
〈ε, v − w〉 dεdw

}

− βijσ2
ij

∫∫
R3×S2+

[
fi(t, x, v

′)fj(t, x, w
′)− fi(t, x, v)fj(t, x, w)

]
×

Θ
(
〈ε, v − w〉 − Γ∗ij

)
Θ
(
〈ε, v�ij − w�ij〉 − Γ∗kl

)
〈ε, v − w〉dεdw,

(53)

and

JRi =βijσ
2
ij

∫∫
R3×S2+

[(
µij
µkl

)3

fk(t, x, v
�
ij)fl(t, x, w

�
ij)− fi(t, x, v)fj(t, x, w)

]
×

Θ
(
〈ε, v − w〉 − Γ∗ij

)
Θ
(
〈ε, v�ij − w�ij〉 − Γ∗kl

)
〈ε, v − w〉dεdw,

(54)

where fi0, i = 1, . . . , 4 are suitable nonnegative initial conditions that will be defined later and Ω ⊆ R3

denotes the spatial domain of the gas mixture. We consider two choices for the set Ω: Ω = R3, or Ω being
a 3-dimensional torus [0, L]3, L > 0. The latter choice corresponds to the case of the periodic boundary
conditions on [0, L]3. Also, Γ∗ij =

√
2γi/µij and Θ is the Heaviside step function.

As before, the pairs of post-reactive velocities are (v�ij , w
�
ij) = (v‡, w‡) for i, j = 1, 2, given in (11)-(12),

and (v�ij , w
�
ij) = (v†, w†) for i, j = 3, 4, given in (18)-(19). The pairs of indices (i, j) and (k, l) are from

the set of quadruples (i, j, k, l) : {(1, 2, 3, 4), (2, 1, 4, 3), (3, 4, 1, 2), (4, 3, 2, 1)}.

Proposition 3.1. Assume that βij = βji for (i, j) ∈ {(1, 2), (2, 1), (3, 4), (4, 3)}. For φi measurable on
Ω× R3 and fi ∈ C0(Ω× R3), i = 1, . . . , 4, we have:

4∑
i=1

∫
R3

φiJ
E
i dv =

4∑
i=1

4∑
s=1

σ2
is

∫∫∫
R3×R3×S2+

[φi(x, v) + φs(x,w)− φi(x, v′)− φs(x,w′)]×

[fi(v
′)fs(w

′)− fi(v)fs(w)] 〈ε, v − w〉Ξis dεdwdv,

(55)
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4∑
i=1

∫
R3

φiJ
R
i dv =

∫∫∫
R3×R3×S2+

[
β12σ

2
12φ1(x, v) + β21σ

2
21φ2(x,w)− β34σ

2
34φ3(x, v‡)− β43σ

2
43φ4(x,w‡)

]
×

[(
µ12

µ34

)3

f3(x, v‡)f4(x,w‡)− f1(x, v)f2(x,w)

]
Θ(〈ε, v − w〉 − Γ∗12)Θ(〈ε, v‡ − w‡〉 − Γ∗34)〈ε, v − w〉 dεdwdv,

(56)
and

4∑
i=1

∫
R3

φiJ
R
i dv =

∫∫∫
R3×R3×S2+

[
β34σ

2
34φ3(x, v) + β43σ

2
43φ4(x,w)− β12σ

2
12φ1(x, v†)− β21σ

2
21φ2(x, v†)

]
×

[(
µ34

µ12

)3

f1(x, v†)f2(x,w†)− f3(x, v)f4(x,w)

]
Θ(〈ε, v − w〉 − Γ∗34)Θ(〈ε, v† − w†〉 − Γ∗12)〈ε, v − w〉 dεdwdv,

(57)
where Ξis, appearing in (55), is given by

Ξis =


1
2
Θ(〈ε, v − w〉) + 1

2
(1− βis)Θ (〈ε, v − w〉 − Γ∗is) Θ

(
〈ε, v�is − w�is〉 − Γ∗kl

)
if (i, s) ∈ I;

1
4
Θ(〈ε, v − w〉), if i = s;

1
2
Θ(〈ε, v − w〉), otherwise,

(58)

with I = {(1, 2), (2, 1), (3, 4), (4, 3)} and the pairs of indices (i, s) and (k, l) are from the set of quadruples
(i, s, k, l) : {(1, 2, 3, 4), (2, 1, 4, 3), (3, 4, 1, 2), (4, 3, 2, 1)} and (v�is, w

�
is) = (v‡, w‡) for i, s = 1, 2, and

(v�is, w
�
is) = (v†, w†) for i, s = 3, 4.

The post-collisional velocities, v′ and w′ are given in (3), while the post-reactive velocities, v‡, w‡ and v†,
w†, are given in (11)-(12) and (18)-(19), respectively.

Proof. The proof of (55) is standard, see, for example, [27], for single specie treatment. The proof for gas
mixtures is similar: it is based on the fact that the absolute value of the Jacobians of the transformations
(v, w) 7→ (v′, w′) and (v, w) 7→ (w, v) is one, together with the identity 〈ε, v − w〉 = 〈−ε, w − v〉. The
change of variables, (v, w) 7→ (v′, w′), (v, w) 7→ (w, v), and ε 7→ −ε, together with the fact that βis = βsi,
results in (55). The multiplicative factor Ξis comes from the fact that the second term of the reactive
collisional integral (54), with βij in front of it, singles out those pre-collisional states that are energetic
enough to result in the reaction, and thus preventing double counting of the events in the collisional
integrals (53)–(54).

Next, we consider the integrals∫
R3

φ1J
R
1 dv = β12σ

2
12

∫∫∫
R3×R3×S2+

φ1(v)

[(
µ12

µ34

)3

f3(v‡)f4(w‡)− f1(v)f2(w)

]
〈ε, v − w〉Θ1234 dεdwdv, (59)

∫
R3

φ2J
R
2 dv = β21σ

2
21

∫∫∫
R3×R3×S2+

φ2(v)

[(
µ12

µ34

)3

f4(v‡)f3(w‡)− f2(v)f1(w)

]
〈ε, v − w〉Θ1234 dεdwdv, (60)

∫
R3

φ3J
R
3 dv = β34σ

2
34

∫∫∫
R3×R3×S2+

φ3(v)

[(
µ34

µ12

)3

f1(v†)f2(w†)− f3(v)f4(w)

]
〈ε, v − w〉Θ3412 dεdwdv, (61)
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and∫
R3

φ4J
R
4 dv = β43σ

2
43

∫∫∫
R3×R3×S2+

φ4(v)

[(
µ34

µ12

)3

f2(v†)f1(w†)− f4(v)f3(w)

]
〈ε, v − w〉Θ3412 dεdwdv, (62)

appearing in the sum on the left hand side of (56). Also, Θ1234 = Θ(〈ε, v−w〉−Γ∗12)Θ(〈ε, v‡−w‡〉−Γ∗34),
in (59)–(60), and Θ3412 = Θ(〈ε, v − w〉 − Γ∗34)Θ(〈ε, v† − w†〉 − Γ∗12), in (61)–(62). We also suppressed x
dependence in φi and fi. Changing the variables of integration in (61)–(62) from (v, w) to (v†, w†) and

using (43) together with the identity 〈ε, v† − w†〉 =

(
µ34

µ12

)1/2

α+ of Lemma 2.1, one obtains,

∫
R3

φ3J
R
3 dv = β34σ

2
34

∫∫∫
R3×R3×S2+

φ3(v)

[(
µ34

µ12

)3

f1(v†)f2(w†)−f3(v)f4(w)

](
µ12

µ34

)3

〈ε, v†−w†〉Θ3412 dεdw
†dv†

(61′)

and∫
R3

φ4J
R
4 dv = β43σ

2
43

∫∫∫
R3×R3×S2+

φ4(v)

[(
µ34

µ12

)3

f2(v†)f1(w†)−f4(v)f3(w)

](
µ12

µ34

)3

〈ε, v†−w†〉Θ3412 dεdw
†dv†.

(62′)

Next, from (41)-(42) of Lemma 2.1, the expressions for v and w (as the functions of v†, w†) are:

v =
1

M

[
m1v

† +m2w
† +m4

µ12

µ34

{
(v† − w†)− ε〈ε, v† − w†〉

}
+m4ε

√
µ12

µ34

α−
]

= v‡(v†, w†) (63)

and

w =
1

M

[
m1v

† +m2w
† −m3

µ12

µ34

{
(v† − w†)− ε〈ε, v† − w†〉

}
−m3ε

√
µ12

µ34

α−
]

= w‡(v†, w†). (64)

Furthermore, Θ3412 = Θ(〈ε, v − w〉 − Γ∗34)Θ(〈ε, v† − w†〉 − Γ∗12), in (61)′–(62)′, is equal to
Θ(〈ε, v† − w†〉 − Γ∗12)Θ(〈ε, v‡ − w‡〉 − Γ∗34) = Θ1234.

Now, combining (63)–(64), the expressions in (61)′–(62)′ take the form∫
R3

φ3J
R
3 dv = β34σ

2
34

∫∫∫
R3×R3×S2+

φ3(v‡)

[
f1(v†)f2(w†)−

(
µ12

µ34

)3

f3(v‡)f4(w‡)

]
〈ε, v†−w†〉Θ1234 dεdw

†dv† (61′′)

and∫
R3

φ4J
R
4 dv = β43σ

2
43

∫∫∫
R3×R3×S2+

φ4(v‡)

[
f2(v†)f1(w†)−

(
µ12

µ34

)3

f4(v‡)f3(w‡)

]
〈ε, v†−w†〉Θ1234 dεdw

†dv†. (62′′)
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Next, change of the variables (v, w, ε) 7→ (w, v,−ε) in (60) and (62′′) together with renaming the integra-
tion variables from (v†, w†) to (v, w) in (61′′)–(62′′), and finally summing up the resulting left hand sides
of (59)–(62), results in (56).

Proof of (57) follows the same line of arguments; this time however, one changes the integration variables
in (59)–(60) from (v, w) to (v‡, w‡). In this process v and w, as the functions of v‡, w‡, become v† and
w†, respectively.

Remark 3.1. The assumption in Proposition 3.1 that fi ∈ C0(Ω × R3), for i = 1, . . . , 4, is only needed
to make sure that all the integrals exist and are finite.

4 Conservation laws

Under the additional condition β12σ
2
12 = β34σ

2
34 that can be easily verified, Proposition 3.1 implies that

for any a, c ∈ R and b ∈ R3,

φi(x, v) = ami +mi〈b, v〉+ c

(
miv

2

2
+ Ei

)
, i = 1, . . . , 4, =⇒


4∑
i=1

∫
R3

φiJ
E
i dv = 0,

4∑
i=1

∫
R3

φiJ
R
i dv = 0.

(65)

Property (65) implies that if fi is a nonnegative smooth solution of (52) on [0, T ], T > 0, then, at least
formally, we have the following conservation laws for t ∈ [0, T ]:

4∑
i=1

∫∫
Ω×R3

mifi(t, x, v) dvdx =
4∑
i=1

∫∫
Ω×R3

mifi0(x, v) dvdx, (mass) (66)

4∑
i=1

∫∫
Ω×R3

mivfi(t, x, v) dvdx =
4∑
i=1

∫∫
Ω×R3

mivfi0(x, v) dvdx, (momentum) (67)

4∑
i=1

∫∫
Ω×R3

(
miv

2

2
+ Ei

)
fi(t, x, v) dvdx =

4∑
i=1

∫∫
Ω×R3

(
miv

2

2
+ Ei

)
fi0(x, v) dvdx, (total energy) (68)

where fi0(x, v), i = 1, . . . , 4, are nonnegative initial conditions of the dilute MSRS kinetic system (52).
The above conservation laws follow easily from multiplying the dilute MSRS system by corresponding
φi, integrating with respect to (t, x, v) ∈ [0, T ]× Ω× R3, and using (65).

An additional conservation law (along the characteristics of the streaming operator in the left hand side
of (52)) can be obtained from the following property:

φi(x, v) = mi
(x− tv)2

2
+ Ei, t ∈ [0, T ], i = 1, . . . , 4, =⇒


4∑
i=1

∫
R3

φiJ
E
i dv = 0,

4∑
i=1

∫
R3

φiJ
R
i dv = 0.

(69)

Indeed, after multiplying dilute MSRS kinetic system (52) by mi
(x− tv)2

2
+Ei and integrating by parts,

one has, for t ∈ [0, T ],

4∑
i=1

∫∫
Ω×R3

(
mi (x− tv)2

2
+ Ei

)
fi(t, x, v) dvdx =

4∑
i=1

∫∫
Ω×R3

(
mix

2

2
+ Ei

)
fi0(x, v) dvdx. (70)
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Next, identity (55) of Proposition 3.1 applied, for each k = 1, . . . , 4, to φi(x, v) = δik, i = 1, . . . , 4, with
δik being the Kronecker delta, imply∫

R3

JEk dv = 0, a.e. in x ∈ Ω and for k = 1, . . . , 4 (71)

and identities (56) or (57) of Proposition 3.1 applied successively to φi(x, v) = δi1, φi(x, v) = δi2, φi(x, v) =
δi3 and φi(x, v) = δi4, yield∫

R3

JR1 dv =

∫
R3

JR2 dv = −
∫
R3

JR3 dv = −
∫
R3

JR4 dv, a.e. in x ∈ Ω. (72)

Properties (71) and (72) result in the additional conservation laws:

n =
4∑
i=1

∫∫
Ω×R3

fi(t, x, v) dvdx =
4∑
i=1

∫∫
Ω×R3

fi0(x, v) dvdx = n0, (73)

n1 + n3 =

∫∫
Ω×R3

[
f1(t, x, v) + f3(t, x, v)

]
dvdx =

∫∫
Ω×R3

[
f10(x, v) + f30(x, v)

]
dvdx = n10 + n30, (74)

n1 + n4 =

∫∫
Ω×R3

[
f1(t, x, v) + f4(t, x, v)

]
dvdx =

∫∫
Ω×R3

[
f10(x, v) + f40(x, v)

]
dvdx = n10 + n40, (75)

n2 + n3 =

∫∫
Ω×R3

[
f2(t, x, v) + f3(t, x, v)

]
dvdx =

∫∫
Ω×R3

[
f20(x, v) + f30(x, v)

]
dvdx = n20 + n30, (76)

n2 + n4 =

∫∫
Ω×R3

[
f2(t, x, v) + f4(t, x, v)

]
dvdx =

∫∫
Ω×R3

[
f20(x, v) + f40(x, v)

]
dvdx = n20 + n40, (77)

where fi0(x, v), i = 1, . . . , 4, are nonnegative initial conditions of the dilute MSRS kinetic system (52).

In other words, in addition to the conservation of the total density n, partial sums of reactant and product
number densities are also preserved, according to the reaction law (1).

5 Balance equations

We now define the macroscopic quantities of the MSRS kinetic model as suitable moments of the distri-
bution functions fi and provide the evolution equations for the most relevant macroscopic quantities.

Macroscopic quantities

ni(t, x) =

∫
R3

fi(t, x, v)dv, n(t, x) =
4∑
i=1

ni(t, x), (78)

%i(t, x) =

∫
R3

mifi(t, x, v)dv, %(t, x) =
4∑
i=1

%i(t, x), (79)
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ui(t, x) =
1

ni(t, x)

∫
R3

vfi(t, x, v)dv, u(t, x) =
1

%(t, x)

4∑
i=1

mini(t, x)ui(t, x), (80)

ui(t, x) =
1

%i(t, x)

∫
R3

mi

(
v − u(t, x)

)
fi(t, x, v)dv, with

4∑
i=1

%i(t, x)ui(t, x) = 0, (81)

p
(rs)
i (t, x) =

∫
R3

mi

(
v − u(t, x)

)(r)(
v − u(t, x)

)(s)
fi(t, x, v)dv, p(sr)(t, x) =

4∑
i=1

p
(sr)
i (t, x), (82)

pi(t, x) =
1

3

∫
R3

mi

(
v − u(t, x)

)2
fi(t, x, v)dv, p(t, x) =

4∑
i=1

pi(t, x), (83)

Ti(t, x) =
pi(t, x)

kni(t, x)
, T (t, x) =

1

n(t, x)

4∑
i=1

ni(t, x)Ti(t, x), T (t, x) =
p(t, x)

kn(t, x)
, (84)

qi(t, x) =
1

2

∫
R3

mi|v − u(t, x)|2
(
v − u(t, x)

)
fi(t, x, v)dv, q(t, x) =

4∑
i=1

(
qi(t, x) +Eini(t, x)ui(t, x)

)
. (85)

In the above expressions, ni, %i, ui, ui, p
(rs)
i , pi, Ti and qi denote the number density, mass density, mean

velocity, diffusion velocity, pressure tensor components, pressure, temperature and heat flux of the ith
component of the reactive mixture, respectively, and k is the Boltzmann constant. Also, the upper indices
r and s indicate spatial directions in a given orthogonal reference system. Moreover, the symbols n, %, u,
p(rs), p, T and q represent the number density, mass density, mean velocity, pressure tensor components,
pressure, temperature and heat flux of the whole mixture, respectively.

Note that the above definitions of the macroscopic quantities establish the connection between the proper-
ties of the mixture and those of its components. In particular, for what concerns the temperature, we will
assume that all species have the same temperature T , meaning that the macroscopic theory considered
in this paper does not take into account the relaxation mechanism of exchanging internal energies among
the species.

By multiplying the MSRS kinetic system (52) by certain functions φi chosen in a convenient but rather
standard way in the kinetic theory [12], [27], and then integrating over v in R3, one can derive the balance
equations for each ith component of the mixture, as well as the conservation laws for the whole mixture.

• Balance equation for the number density of each ith component (chemical rate equation)

∂ni
∂t

+
3∑
s=1

∂

∂xs

(
niu

(s)
i + niu

(s)
)

=

∫
R3

JRi dv, i = 1, . . . , 4, (86)

where the integral on the right-hand-side defines the reaction rate of the MSRS kinetic system.

• Balance equation for the momentum of each ith component of the reactive mixture

∂

∂t

(
%iu

(r)
i

)
+

3∑
s=1

∂

∂xs

[
p

(rs)
i + %iu

(r)
i u(s) + %iu

(s)
i u(r) + %iu

(r)u(s)
]

=

∫
R3

mi

(
JEi + JRi

)
v(r)dv, i = 1, . . . , 4 r = 1, 2, 3. (87)
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• Balance equation for the total energy of each ith component of the reactive mixture

∂

∂t

(
3

2
pi + niEi +

3∑
r=1

%iu
(r)
i u(r) +

1

2
%iu

2

)

+
3∑
s=1

∂

∂xs

[
q

(s)
i +

3∑
r=1

p
(sr)
i u(r) + niEiu

(s)
i +

1

2
%iu

(s)
i u2

+

(
3

2
pi + niEi +

3∑
r=1

%iu
(r)
i u(r) +

1

2
%iu

2

)
u(s)

]

=

∫
R3

(
1

2
miv

2 + Ei

)(
JEi + JRi

)
vdv, i = 1, . . . , 4. (88)

• Conservation law for partial number densities

∂

∂t
(ni + nk) +

3∑
s=1

∂

∂xs

[
niu

(s)
i + nku

(s)
k + (ni + nk)u

(s)
]

= 0, for i ∈ {1, 2} and k ∈ {3, 4}. (89)

• Conservation law for the mass density of the whole mixture

∂%

∂t
+

3∑
s=1

∂

∂xs

(
%u(s)

)
= 0. (90)

• Conservation law for the momentum components of the whole mixture

∂

∂t

(
%u(r)

)
+

3∑
s=1

∂

∂xs

[
p(rs) + %u(r)u(s)

]
= 0, r = 1, 2, 3. (91)

• Conservation law for the total energy of the whole mixture

∂

∂t

(
3

2
nkT +

4∑
i=1

niEi+
1

2
%u2

)
+

3∑
r=1

∂

∂xr

[
q(r)+

3∑
s=1

p(rs)u(s)+

(
3

2
nkT +

4∑
i=1

niEi+
1

2
%u2

)
u(s)

]
= 0. (92)

6 Entropy identity, H-function, and equilibrium solutions

Proposition 3.1 also implies existence of a Liapunov functional (an H-function) for (52), consistent with
system’s physical equilibrium. Assume that for i, j = 1, . . . , 4, the conditions βij = βji and β12σ

2
12 = β34σ

2
34

are satisfied. For fi, a smooth nonnegative solution, we multiply (52) by 1 + log
(
fi/(µij)

3/2
)

with
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i = 1, . . . 4 and (i, j) ∈ {(1, 2), (2, 1), (3, 4), (4, 3)}, and integrate over Ω × R3, and use (55)–(56) (with
φi = log

(
fi/(µij)

3/2
)
) to obtain the following entropy identity:

d

dt

4∑
i=1

∫∫
Ω×R3

fi log
(
fi/(µij)

3/2
)
dvdx

+
4∑

i,s=1

σ2
is

∫
· · ·
∫

Ω×R3×R3×S2+

[
fi(v

′)fs(w
′)− fi(v)fs(w)

]
log

(
fi(v

′)fs(w
′)

fi(v)fs(w)

)
〈ε, v − w〉Ξis dεdwdvdx

+ β12σ
2
12

∫
· · ·
∫

Ω×R3×R3×S2+

{[(
µ12

µ34

)3

f3(v‡)f4(w‡)− f1(v)f2(w)

]
×

log

[(
µ12

µ34

)3
f3(v‡)f4(w‡)

f1(v)f2(w)

]
Θ(〈ε, v − w〉 − Γ∗12)Θ(〈ε, v‡ − w‡〉 − Γ∗34)〈ε, v − w〉

}
dεdwdvdx = 0, (93)

with Ξis given in (58). We observe that the second and the third terms in the left hand side of (93) are
nonnegative. Indeed, this follows from the inequalities

[fi(v
′)fs(w

′)− fi(v)fs(w)] log

(
fi(v

′)fs(w
′)

fi(v)fs(w)

)
≥ 0, (94)[(

µ12

µ34

)3

f3(v‡)f4(w‡)− f1(v)f2(w)

]
log

[(
µ12

µ34

)3
f3(v‡)f4(w‡)

f1(v)f2(w)

]
≥ 0, (95)

for any i, s = 1, . . . , 4. Finally, integrating (93) over 0 ≤ t1 ≤ τ ≤ t2 ≤ T and using (94)-(95), we obtain

4∑
i=1

∫∫
Ω×R3

fi(t2, x, v) log
[
fi(t2, x, v)/(µij)

3/2
]
dvdx ≤

4∑
i=1

∫∫
Ω×R3

fi(t1, x, v) log
[
fi(t1, x, v)/(µij)

3/2
]
dvdx,

(96)
for any 0 ≤ t1 ≤ t2. Inequality (96) implies that under the conditions βij = βji > 0 (i = 1, . . . , 4) and
β12σ

2
12 = β34σ

2
34, the convex function H(t), defined by

H(t) =
4∑
i=1

∫∫
Ω×R3

fi(t, x, v) log
[
fi(t, x, v)/(µij)

3/2
]
dvdx, (97)

is an H-function (Liapunov functional) for the system (52)-(54).

We have the following characterization of equilibrium solutions for the system (52)-(54):

Proposition 6.1. Assume that for i, j = 1, . . . , 4, the coefficients 0 < βij ≤ 1 satisfy the conditions
βij = βji and β12σ

2
12 = β34σ

2
34. For ni(t, x) ≥ 0, u(t, x), and T (t, x) ≥ 0 measurable functions and

0 ≤ fi ∈ L1(Ω× R3), the following statements are equivalent:

1. fi = ni

( mi

2πkT

)3/2

exp

(
−mi(v − u)2

2kT

)
, i = 1, . . . , 4, and n1n2 =

(
µ12

µ34

)3/2

n3n4 exp

(
Eabs
kT

)
,

2. JEi ({fi}) = 0 and JRi ({fi}) = 0, i = 1, . . . , 4,
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3.
4∑
i=1

∫
R3

[
JEi ({fi}) + JRi ({fi})

]
log (fi/µij) dv = 0.

The notations JEi ({fi}) and JRi ({fi}) signify the fact that for i = 1, . . . , 4, the collisional operators depend
on the set one-particle distribution functions, f1, f2, f3, and f4.

Proposition 6.1 characterizes equilibrium solutions for the MSRS system (52)-(54). In particular, the con-
dition on the partial number densities ni and mixture temperature T appearing in item 1 of Proposition
6.1 represents the mass action law (m.a.l.) of the MSRS model. On the other hand, the expressions for
the distribution functions fi, given in item 1 of Proposition 6.1, indicate that when the reactive mixture
evolves towards the equilibrium, all species relax to the same temperature, which is the temperature T
of the mixture.

Now, if we disregard the chemical reaction, the mixture becomes non-reactive or chemically inert and the
previous Proposition 6.1 reduces to the following result.

Corollary 6.1. Assume that βij = 0 for i, j = 1, . . . , 4, i.e., JRi ≡ 0 and the corresponding system
(52)-(54) is chemically inert. For ni(t, x) ≥ 0, u(t, x), and T (t, x) ≥ 0 measurable functions and 0 ≤
fi ∈ L1(Ω× R3), the following statements are equivalent:

1. fi = ni

( mi

2πkT

)3/2

exp

(
−mi(v − u)2

2kT

)
, i = 1, . . . , 4,

2. JEi ({fi}) = 0, i = 1, . . . , 4,

3.
4∑
i=1

∫
R3

JEi ({fi}) log fi dv = 0,

with the corresponding H-function given by

HE(t) =
4∑
i=1

∫∫
Ω×R3

fi(t, x, v) log fi(t, x, v) dvdx. (98)

The proofs of Proposition 6.1 and Corollary (6.1) follow a very similar line of arguments as the proof of
Proposition 3.2 in [10] and are not given here.

7 Spatially homogeneous evolution

In this section we consider spatially homogeneous conditions, so that the various quantities describing the
mixture and appearing in the system (52)-(54) do not depend on x. We are interested in the macroscopic
state of the mixture characterized in terms of macroscopic quantities and balance equations.
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7.1 Balance equations

In the spatially homogeneous case, the balance equations (86)–(92) take the form

dni
dt

=

∫
R3

JRi dv, i = 1, . . . , 4, (99)

dn

dt
= 0, (100)

dρ

dt
= 0, (101)

d

dt

(
%u
)

= 0, (102)

d

dt

(
3

2
nkT +

4∑
i=1

niEi +
1

2
%u2

)
= 0. (103)

Equations (100), (101), and (102) yield n = constant, ρ = constant, and u = constant while equation
(103), with ρ and u being constants, implies

3

2
nkT +

4∑
i=1

niEi = constant. (104)

If we choose the reference frame for which the mixture is stationary, we have u = 0 and the macroscopic
state of the reactive mixture is then defined by the set {n1, n2, n3, n4, T }. If we consider an initial state
defined by {n10, n20, n30, n40, T0}, from Eqs. (99) and (104), with n = n0, we obtain

n1 − n10 = n2 − n20 = −
(
n3 − n30

)
= −

(
n4 − n40

)
(105)

and
3

2
n0kT +

4∑
i=1

niEi =
3

2
n0kT0 +

4∑
i=1

ni0Ei. (106)

Therefore, (105) and (106) yield the following expressions for partial number density ni in terms of the
mixture temperature:

ni(t) = ni0 +
3n0k

[
T (t)− T0

]
2Eabs

, i = 1, 2, and ni(t) = ni0 −
3n0k

[
T (t)− T0

]
2Eabs

, i = 3, 4, (107)

where Eabs = E3 + E4 − E1 − E2 has been introduced in section 2.2.

7.2 Uniqueness of equilibrium state

The macroscopic state of the mixture is fully described by the partial densities ni, i = 1, 2, 3, 4, and the
temperature T of the mixture. In equilibrium (described in the general case of spatially inhomogeneous
conditions by Proposition 6.1), the balance equations (99)–(103) have a unique positive solution that
depends only on initial partial densities, ni0, i = 1, 2, 3, 4, and the initial temperature T0. We have
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Proposition 7.1. In equilibrium, the macroscopic state of the mixture governed by the system (52)-(54)
is uniquely determined by the initial partial densities, ni0 > 0, i = 1, 2, 3, 4, and the initial temperature
T0 > 0.

Proof. In contrast to the proof of the similar result in [1] (Proposition 1), we do not assume positivity of
the sought equilibrium solution.

In addition to (107), in equilibrium, the partial densities and temperature satisfy the mass action law
(see (1) of Proposition 6.1):

n1n2 =

(
µ12

µ34

)3/2

n3n4 exp

(
Eabs
kT

)
. (108)

We want to show that equations (107) and (108) have a unique non-negative solution determined by the
initial macroscopic values n10, n20, n30, n40, and T0.

After rescaling of both temperature and partial densities to T̂ = kT /Eabs and n̂i = 2ni/3n0 for i =
1, 2, 3, 4, respectively, and with n0 = n10 +n20 +n30 +n40 = n1 +n2 +n3 +n4, equations (107) and (108)
become

n̂i = n̂i0 + (T̂ − T̂0), i = 1, 2, (109)

n̂i = n̂i0 − (T̂ − T̂0), i = 3, 4, (110)

n̂1n̂2 =

(
µ12

µ34

)3/2

n̂3n̂4 exp

(
1

T̂

)
, (111)

together with the constraint n̂1 + n̂2 + n̂3 + n̂4 = n̂10 + n̂20 + n̂30 + n̂40 = 2/3. We have

Lemma 7.1. Function

F (T̂ ) =
(
n̂10 + (T̂ − T̂0)

)(
n̂20 + (T̂ − T̂0)

)(µ34

µ12

)3/2

exp

(
− 1

T̂

)
−
(
n̂30 − (T̂ − T̂0)

)(
n̂40 − (T̂ − T̂0)

)
,

(112)

defined on the interval (L1, L2), with L1 = max
(

0, T̂0 −min(n̂10, n̂20)
)

and L2 = T̂0 + min(n̂30, n̂40), has

only one (positive) zero.

Proof of Lemma 7.1. For given initial partial densities ni0 > 0, i = 1, 2, 3, 4, and the initial temperature
T0 > 0, we consider two cases: (1) T̂0 − min(n̂10, n̂20) ≤ 0 and (2) T̂0 − min(n̂10, n̂20) > 0. In case (1),
L1 = 0 and

lim
T̂ →0+

F (T̂ ) = −(n̂30 + T̂0)(n̂40 + T̂0) < 0, (113)

lim
T̂ →L−2

F (T̂ ) = (n̂10 + min(n̂30, n̂40)) (n̂20 + min(n̂30, n̂40))

(
µ34

µ12

)3/2

exp

(
− 1

T̂0 + min(n̂30, n̂40)

)
> 0,

(114)

while in case (2), we have L1 = T̂0 −min(n̂10, n̂20) > 0 and property (113) is replaced by the property

lim
T̂ →L+

1

F (T̂ ) = − (n̂30 + min(n̂10, n̂20)) (n̂40 + min(n̂10, n̂20)) < 0. (115)
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Additionally, in both cases, the derivative of F (T̂ ),

F ′(T̂ ) =
{(
n̂10 + (T̂ − T̂0)

)
+
(
n̂20 + (T̂ − T̂0)

)}(µ34

µ12

)3/2

exp

(
− 1

T̂

)

+

(
n̂10 + (T̂ − T̂0)

)(
n̂20 + (T̂ − T̂0)

)(µ34

µ12

)3/2

exp

(
− 1

T̂

)
T̂ 2

+
(
n̂30 − (T̂ − T̂0)

)
+
(
n̂40 − (T̂ − T0)

)
,

(116)

is positive on the interval (L1, L2). Indeed, the terms
(
n̂10 + (T̂ − T̂0)

)
,
(
n̂20 + (T̂ − T̂0)

)
,
(
n̂30 − (T̂ − T̂0)

)
,

and
(
n̂40 − (T̂ − T̂0)

)
in (116) are all non-negative on (L1, L2), with at least three of them being positive.

Properties (113)-(114) in case (1), or properties (115)-(114) in case (2), together with F (T̂ ) being strictly
increasing, imply the existence of a unique zero of function F (T̂ ) on (L1, L2).

Now, for T̂ = T̂ eq, the unique positive zero of F (T̂ ) obtained in Lemma 7.1, we define the unique
equilibrium partial densities (see (109)-(110)) by

n̂eqi = n̂i0 + (T̂ eq − T̂0), i = 1, 2, (117)

n̂eqi = n̂i0 − (T̂ eq − T̂0), i = 3, 4. (118)

Next, since T̂0 − min(n̂10, n̂20) < T̂ eq < T̂0 + min(n̂30, n̂40), we observe that n̂eqi ≥ 0, for i = 1, 2, 3, 4.
Therefore, n̂i = n̂eqi and T̂ = T̂ eq > 0 is the unique non-negative solution of the system (109)-(111), while
the densities neqi = (3/2)n0n̂

eq
i , for i = 1, 2, 3, 4 and the temperature T eq = (Eabs/k)T̂ eq is the unique

equilibrium solution of equations (107) and (108).

8 Appendix: SRS model

In the simple reacting spheres (SRS) kinetic model, the reactive collision between particles of species i
and s occur (i, s = 1, . . . , 4) when the kinetic energy associated with the relative motion along the line
of centers exceeds the activation energy γi,

(1/2)µis
(
〈ε, v − w〉

)2 ≥ γi. (119)

Now, combining the assumed conservations of momentum and total energy for the reactive events:

m1v +m2w = m3v
‡ +m4w

‡

m1v
2 +m2w

2 = m3v
‡2 +m4w

‡2 + 2Eabs,
(120)

where v‡ and w‡ are post-reactive values of the velocities v and w and Eabs is the energy absorbed by the
internal degrees of freedom, we obtain the relation (see also [3])(√

µ34

2
(v‡ − w‡)

)2

=

(√
µ12

2
(v − w)

)2

− Eabs. (121)

The resulting connection between the pre- and post-reactive relative velocities can be written in the form√
µ34

2
(v‡ − w‡) =

√
µ12

2
(v − w) + Λε, (122)
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where

Λ = −
〈√

µ12

2
(v − w), ε

〉
+

√〈√
µ12

2
(v − w), ε

〉2

− Eabs (123)

And finally, in the case of the reaction A+B → A∗ +B∗, the post-reactive values of velocities v, w

v‡ =
1

M

[
m1v +m2w +m4

√
µ12

µ34

{
(v − w)− ε〈ε, v − w〉+ εα−

}]
, (124)

w‡ =
1

M

[
m1v +m2w −m3

√
µ12

µ34

{
(v − w)− ε〈ε, v − w〉+ εα−

}]
, (125)

with α− =
√(
〈ε, v − w〉

)2 − 2Eabs/µ12 and, Eabs, the energy absorbed by the internal degrees of freedom.

The absorbed energy Eabs has the property Eabs = E3 + E4 − E1 − E2 > 0, where Ei > 0, i = 1, . . . 4, is
the energy of i-th particle associated with its internal degrees of freedom.

The activation energies γ1, γ2 for A and B are chosen to satisfy γ1 ≥ Eabs > 0, and by symmetry, γ2 = γ1.

For the inverse reaction A∗ + B∗ → A+ B, we proceed in a similar with the expressions and obtain the
following expressions for v† and w†

v† =
1

M

[
m3v +m4w +m2

√
µ34

µ12

{
(v − w)− ε〈ε, v − w〉+ εα+

}]
, (126)

w† =
1

M

[
m3v +m4w −m1

√
µ34

µ12

{
(v − w)− ε〈ε, v − w〉+ εα+

}]
, (127)

with α+ =
√(
〈ε, v − w〉

)2
+ 2Eabs/µ34, and the activation energies for A∗ and B∗, γ3 = γ1 − Eabs and,

γ4 = γ3.

Post- and pre-collisional velocities of the reactive pairs satisfy conservation of the momentum

m1v +m2w = m3v
‡ +m4w

‡, m3v +m4w = m1v
† +m2w

†. (128)

A part of kinetic energy is exchanged with the energy absorbed by the internal states. The following
equalities hold:

m1v
2 +m2w

2 = m3v
‡2 +m4w

‡2 + 2Eabs,

m3v
2 +m4w

2 = m1v
†2 +m2w

†2 − 2Eabs.
(129)

In the SRS kinetic model, the angular momentum is not conserved during the reactive collisional process,
unless µ12 = µ34.

8.1 SRS’ version of Lemma 2.1

Lemma 8.1.

(1) The inverse velocities to v‡, w‡ are given by

v =
1

M

[
m3v

‡ +m4w
‡ +m2

√
µ34

µ12

{
(v‡ − w‡)− ε〈ε, v‡ − w‡〉+ εα+

}]
, (130)

w =
1

M

[
m3v

‡ +m4w
‡ −m1

√
µ34

µ12

{
(v‡ − w‡)− ε〈ε, v‡ − w‡〉+ εα+

}]
, (131)
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and the inverse velocities to v†, w† are given by

v =
1

M

[
m1v

† +m2w
† +m4

√
µ12

µ34

{
(v† − w†)− ε〈ε, v† − w†〉+ εα−

}]
, (132)

w =
1

M

[
m1v

† +m2w
† −m3

√
µ12

µ34

{
(v† − w†)− ε〈ε, v† − w†〉+ εα−

}]
. (133)

(2) For fixed ε, the Jacobians of the transformations (v, w) 7→ (v†, w†) and (v, w) 7→ (v‡, w‡) are given by(
µ34

µ12

)3/2 〈ε, v − w〉
α+

and

(
µ12

µ34

)3/2 〈ε, v − w〉
α−

, (134)

respectively.

(3) Furthermore, 〈ε, v† − w†〉 =

(
µ34

µ12

)1/2

α+, 〈ε, v‡ − w‡〉 =

(
µ12

µ34

)1/2

α−,
1

2
µ12

(
〈ε, v − w〉

)2 − γ1 =

1

2
µ34

(
〈ε, v‡ − w‡〉

)2 − γ3, and
1

2
µ34

(
〈ε, v − w〉

)2 − γ3 =
1

2
µ12

(
〈ε, v† − w†〉

)2 − γ1.

8.2 The dilute SRS kinetic system

∂fi
∂t

+ v
∂fi
∂x

= JEi + JRi , fi(0, x, v) = fi0(x, v), i = 1, . . . , 4, (x, v) ∈ Ω× R3, (135)

with

JEi =
4∑
s=1

{
σ2
is

∫∫
R3×S2+

[
fi(t, x, v

′)fs(t, x, w
′)− fi(t, x, v)fs(t, x, w)

]
〈ε, v − w〉 dεdw

}

− βijσ2
ij

∫∫
R3×S2+

[
fi(t, x, v

′)fj(t, x, w
′)− fi(t, x, v)fj(t, x, w)

]
Θ(〈ε, v − w〉 − Γij) 〈ε, v−w〉dεdw, (136)

and

JRi =βijσ
2
ij

∫∫
R3×S2+

[(
µij
µkl

)2

fk(t, x, v
�
ij)fl(t, x, w

�
ij)−fi(t, x, v)fj(t, x, w)

]
Θ(〈ε, v − w〉−Γij) 〈ε, v−w〉dεdw, (137)

where fi0, i = 1, . . . , 4 are suitable nonnegative initial conditions and Ω ⊆ R3 denotes the spatial domain of
the gas mixture. Γij =

√
2γi/µij and Θ is the Heaviside step function. As before, the pairs of post-reactive

velocities, (v�ij , w
�
ij) = (v‡, w‡) for i, j = 1, 2, and (v�ij , w

�
ij) = (v†, w†) for i, j = 3, 4. The pairs of indices

(i, j) and (k, l) are from the set of quadruples (i, j, k, l) : {(1, 2, 3, 4), (2, 1, 4, 3), (3, 4, 1, 2), (4, 3, 2, 1)}.

8.3 SRS’ version of Proposition 3.1

Proposition 8.1. Assume that βij = βji for (i, j) ∈ {(1, 2), (2, 1), (3, 4), (4, 3)}. For φi measurable on
Ω× R3 and fi ∈ C0(Ω× R3), i = 1, . . . , 4, we have:
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4∑
i=1

∫
R3

φiJ
E
i dv =

4∑
i=1

4∑
s=1

σ2
is

∫∫∫
R3×R3×S2+

[φi(x, v) + φs(x,w)− φi(x, v′)− φs(x,w′)]×

[fi(v
′)fs(w

′)− fi(v)fs(w)] 〈ε, v − w〉Ξis dεdwdv,

(138)

4∑
i=1

∫
R3

φiJ
R
i dv =

∫∫∫
R3×R3×S2+

[
β12σ

2
12φ1(x, v) + β21σ

2
21φ2(x,w)− β34σ

2
34φ3(x, v‡)− β43σ

2
43φ4(x,w‡)

]
×

[(
µ12

µ34

)2

f3(x, v‡)f4(x,w‡)− f1(x, v)f2(x,w)

]
Θ(〈ε, v − w〉 − Γ12)〈ε, v − w〉 dεdwdv,

(139)

and

4∑
i=1

∫
R3

φiJ
R
i dv =

∫∫∫
R3×R3×S2+

[
β34σ

2
34φ3(x, v) + β43σ

2
43φ4(x,w)− β12σ

2
12φ1(x, v†)− β21σ

2
21φ2(x, v†)

]
×

[(
µ34

µ12

)2

f1(x, v†)f2(x,w†)− f3(x, v)f4(x,w)

]
Θ(〈ε, v − w〉 − Γ34)〈ε, v − w〉 dεdwdv,

(140)

where Ξis, appearing in (138), is given by

Ξis =


1
2
Θ(〈ε, v − w〉) + 1

2
(1− βis)Θ(Γis − 〈ε, v − w〉), if (i, s) ∈ I;

1
4
Θ(〈ε, v − w〉), if i = s;

1
2
Θ(〈ε, v − w〉), otherwise,

(141)

with I = {(1, 2), (2, 1), (3, 4), (4, 3)}.
The post-collisional velocities, v′ and w′ are given in (3), while the post-reactive velocities, v‡, w‡ and v†,
w†, are given in (130)-(131) and (132)-(133), respectively.

As in the case of MSRS, Proposition 8.1 for SRS model implies that when βij = βji > 0 (i = 1, . . . , 4)
and β12σ

2
12 = β34σ

2
34, the convex function H(t), defined by

H(t) =
4∑
i=1

∫∫
Ω×R3

fi(t, x, v) log [fi(t, x, v)/µij] dvdx, (142)

is an H-function (Liapunov functional) for the SRS model and the following result holds:

Proposition 8.2. Assume that for i, j = 1, . . . , 4, the coefficients 0 < βij ≤ 1 satisfy the conditions
βij = βji and β12σ

2
12 = β34σ

2
34. For ni(t, x) ≥ 0, u(t, x), and T (t, x) ≥ 0 measurable functions and

0 ≤ fi ∈ L1(Ω× R3), the following statements are equivalent:

1. fi = ni

( mi

2πkT

)3/2

exp

(
−mi(v − u)2

2kT

)
, i = 1, . . . , 4, and n1n2 =

(
µ12

µ34

)1/2

n3n4 exp

(
Eabs
kT

)
,

2. JEi ({fi}) = 0 and JRi ({fi}) = 0, i = 1, . . . , 4,
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3.
4∑
i=1

∫
R3

[
JEi ({fi}) + JRi ({fi})

]
log (fi/µij) dv = 0.

The notations JEi ({fi}) and JRi ({fi}) signify the fact that for i = 1, . . . , 4, the collisional operators depend
on the set one-particle distribution functions, f1, f2, f3, and f4.

We observe that the post-reactive velocities in the SRS model (see (124)-(125) and (126)-(127)) yield the

factor

(
µij
µkl

)2

in (137), while in the MSRS model this factor is

(
µij
µkl

)3

. This difference also results in

different forms of the mass-action law:

n1n2 =

(
µ12

µ34

)1/2

n3n4 exp

(
Eabs
kT

)
(SRS model)

n1n2 =

(
µ12

µ34

)3/2

n3n4 exp

(
Eabs
kT

)
(MSRS model)
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Chimiques En Phase Gazeuse, Physica XVI (1950), 51–64.

[6] R.D. Present, On the velocity distribution in a chemically reacting gas, J. Chem. Phys., 31 (1959),
747–750.

[7] J. Ross and P. Mazur, Some deductions from a formal statistical mechanical theory of chemical kinet-
ics, J. Chem. Phys., 35 (1961), 19–28.

[8] B. Shizgal and M. Karplus, Nonequilibrium contributions to the Rate of Reaction. I. Perturbation of
the Velocity Distribution Function, J. Chem. Phys. 52 (1970), 4262–4278.

[9] V. Giovangigli and M. Massot, Entropic structure of multicomponent reactive flows with partial equi-
librium reduced chemistry, Math. Meth. Appl. Sci., 27 (2004), 739–768.

25



[10] J. Polewczak, The kinetic theory of simple reacting spheres: I. Global existence result in a dilute-gas
case, J. Stat. Physics, 100 (2000), 327–362.

[11] J. Polewczak and A.J. Soares, Kinetic Theory of Simple Reacting Spheres I, in: 27th International
Symposium on Rarefied Gas Dynamics, 2010, Pacific Grove. AIP Conference Proceedings, vol. 1333,
pp. 117–122, 2011.

[12] V. Giovangigli, Multicomponent Flow Modeling, Birkhäuser, Boston, 1999.
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