4,554 research outputs found

    Dynamic stability of a bearingless circulation control rotor blade in hover

    Get PDF
    The aeroelastic stability of flap bending, lead-lag bending and torsion of a bearingless circulation control rotor blade in hover is investigated using a finite element formulation based on Hamilton's principle. The flexbeam, the torque tube and the outboard blade are discretized into beam elements, each with fifteen nodal degrees of freedom. Quasisteady strip theory is used to evaluate the aerodynamic forces and the airfoil characteristics are represented either in the form of simple analytical expressions or in the form of data tables. A correlation study of analytical results with the experimental data is attempted for selected bearingless blade configurations with conventional airfoil characteristics

    Further studies of stall flutter and nonlinear divergence of two-dimensional wings

    Get PDF
    An experimental investigation is made of the purely torsional stall flutter of a two-dimensional wing pivoted about the midchord, and also of the bending-torsion stall flutter of a two-dimensional wing pivoted about the quarterchord. For the purely torsional flutter case, large amplitude limit cycles ranging from + or - 11 to + or - 160 degrees were observed. Nondimensional harmonic coefficients were extracted from the free transient vibration tests for amplitudes up to 80 degrees. Reasonable nondimensional correlation was obtained for several wing configurations. For the bending-torsion flutter case, large amplitude coupled limit cycles were observed with torsional amplitudes as large as + or - 40 degrees. The torsion amplitudes first increased, then decreased with increasing velocity. Additionally, a small amplitude, predominantly torsional flutter was observed when the static equilibrium angle was near the stall angle

    Aeroelastic Stability of Rotor Blades Using Finite Element Analysis

    Get PDF
    The flutter stability of flap bending, lead-lag bending, and torsion of helicopter rotor blades in hover is investigated using a finite element formulation based on Hamilton's principle. The blade is divided into a number of finite elements. Quasi-steady strip theory is used to evaluate the aerodynamic loads. The nonlinear equations of motion are solved for steady-state blade deflections through an iterative procedure. The equations of motion are linearized assuming blade motion to be a small perturbation about the steady deflected shape. The normal mode method based on the coupled rotating natural modes is used to reduce the number of equations in the flutter analysis. First the formulation is applied to single-load-path blades (articulated and hingeless blades). Numerical results show very good agreement with existing results obtained using the modal approach. The second part of the application concerns multiple-load-path blades, i.e. bearingless blades. Numerical results are presented for several analytical models of the bearingless blade. Results are also obtained using an equivalent beam approach wherein a bearingless blade is modelled as a single beam with equivalent properties. Results show the equivalent beam model

    Calculated Hovering Helicopter Flight Dynamics with a Circulation Controlled Rotor

    Get PDF
    The influence of the rotor blowing coefficient on the calculated roots of the longitudinal and lateral motion was examined for a range of values of the rotor lift and the blade flap frequency. The control characteristics of a helicopter with a circulation controlled rotor are discussed. The principal effect of the blowing is a reduction in the rotor speed stability derivative. Above a critical level of blowing coefficient, which depends on the flap frequency and rotor lift, negative speed stability is produced and the dynamic characteristics of the helicopter are radically altered

    Lithium alters expression of RNAs in a type-specific manner in differentiated human neuroblastoma neuronal cultures, including specific genes involved in Alzheimer's disease.

    Get PDF
    Lithium (Li) is a medication long-used to treat bipolar disorder. It is currently under investigation for multiple nervous system disorders, including Alzheimer's disease (AD). While perturbation of RNA levels by Li has been previously reported, its effects on the whole transcriptome has been given little attention. We, therefore, sought to determine comprehensive effects of Li treatment on RNA levels. We cultured and differentiated human neuroblastoma (SK-N-SH) cells to neuronal cells with all-trans retinoic acid (ATRA). We exposed cultures for one week to lithium chloride or distilled water, extracted total RNA, depleted ribosomal RNA and performed whole-transcriptome RT-sequencing. We analyzed results by RNA length and type. We further analyzed expression and protein interaction networks between selected Li-altered protein-coding RNAs and common AD-associated gene products. Lithium changed expression of RNAs in both non-specific (inverse to sequence length) and specific (according to RNA type) fashions. The non-coding small nucleolar RNAs (snoRNAs) were subject to the greatest length-adjusted Li influence. When RNA length effects were taken into account, microRNAs as a group were significantly less likely to have had levels altered by Li treatment. Notably, several Li-influenced protein-coding RNAs were co-expressed or produced proteins that interacted with several common AD-associated genes and proteins. Lithium's modification of RNA levels depends on both RNA length and type. Li activity on snoRNA levels may pertain to bipolar disorders while Li modification of protein coding RNAs may be relevant to AD

    Magnetoresistance of atomic-sized contacts: an ab-initio study

    Full text link
    The magnetoresistance (MR) effect in metallic atomic-sized contacts is studied theoretically by means of first-principle electronic structure calculations. We consider three-atom chains formed from Co, Cu, Si, and Al atoms suspended between semi-infinite Co leads. We employ the screened Korringa-Kohn-Rostoker Green's function method for the electronic structure calculation and evaluate the conductance in the ballistic limit using the Landauer approach. The conductance through the constrictions reflects the spin-splitting of the Co bands and causes high MR ratios, up to 50%. The influence of the structural changes on the conductance is studied by considering different geometrical arrangements of atoms forming the chains. Our results show that the conductance through s-like states is robust against geometrical changes, whereas the transmission is strongly influenced by the atomic arrangement if p or d states contribute to the current.Comment: Revised version, presentation of results is improved, figure 2 is splitted to two figure

    Broad boron sheets and boron nanotubes: An ab initio study of structural, electronic, and mechanical properties

    Full text link
    Based on a numerical ab initio study, we discuss a structure model for a broad boron sheet, which is the analog of a single graphite sheet, and the precursor of boron nanotubes. The sheet has linear chains of sp hybridized sigma bonds lying only along its armchair direction, a high stiffness, and anisotropic bonds properties. The puckering of the sheet is explained as a mechanism to stabilize the sp sigma bonds. The anisotropic bond properties of the boron sheet lead to a two-dimensional reference lattice structure, which is rectangular rather than triangular. As a consequence the chiral angles of related boron nanotubes range from 0 to 90 degrees. Given the electronic properties of the boron sheets, we demonstrate that all of the related boron nanotubes are metallic, irrespective of their radius and chiral angle, and we also postulate the existence of helical currents in ideal chiral nanotubes. Furthermore, we show that the strain energy of boron nanotubes will depend on their radii, as well as on their chiral angles. This is a rather unique property among nanotubular systems, and it could be the basis of a different type of structure control within nanotechnology.Comment: 16 pages, 17 figures, 2 tables, Versions: v1=preview, v2=first final, v3=minor corrections, v4=document slightly reworke

    Decrement Operators in Belief Change

    Full text link
    While research on iterated revision is predominant in the field of iterated belief change, the class of iterated contraction operators received more attention in recent years. In this article, we examine a non-prioritized generalisation of iterated contraction. In particular, the class of weak decrement operators is introduced, which are operators that by multiple steps achieve the same as a contraction. Inspired by Darwiche and Pearl's work on iterated revision the subclass of decrement operators is defined. For both, decrement and weak decrement operators, postulates are presented and for each of them a representation theorem in the framework of total preorders is given. Furthermore, we present two sub-types of decrement operators

    P09-15. Selection of higher avidity HLA-restricted T cell responses as a viral adaptation strategy

    Get PDF
    Loss of immune reactivity due to HIV mutational escape is well described. Data generated from a large population-based study (n>800) suggested that certain CD8 T cell epitopes are created as a result of HIV adaptation and are associated with enhanced viral replication. Here we sought to investigate the HLA-restricted T-cell responses associated with seven such adaptations

    Setting implementation research priorities to reduce preterm births and stillbirths at the community level.

    Get PDF
    Asha George and colleagues from the GAPPS group report the implementation research priorities to address prematurity and stillbirths at the community level that resulted from their recent expert consensus exercise
    corecore