152 research outputs found

    Metallicity Distribution Functions, Radial Velocities, and Alpha Element Abundances in Three Off-Axis Bulge Fields

    Full text link
    We present radial velocities and chemical abundance ratios of [Fe/H], [O/Fe], [Si/Fe], and [Ca/Fe] for 264 red giant branch (RGB) stars in three Galactic bulge off-axis fields located near (l,b)=(-5.5,-7), (-4,-9), and (+8.5,+9). The results are based on equivalent width and spectrum synthesis analyses of moderate resolution (R~18,000), high signal-to-noise ratio (S/N~75-300) spectra obtained with the Hydra spectrographs on the Blanco 4m and WIYN 3.5m telescopes. The targets were selected from the blue side of the giant branch to avoid cool stars that would be strongly affected by CN and TiO; however, a comparison of the color-metallicity distribution in literature samples suggests our selection of bluer targets should not present a significant bias against metal-rich stars. We find a full range in metallicity that spans [Fe/H]\approx-1.5 to +0.5, and that, in accordance with the previously observed minor-axis vertical metallicity gradient, the median [Fe/H] also declines with increasing Galactic latitude in off-axis fields. The off-axis vertical [Fe/H] gradient in the southern bulge is estimated to be ~0.4 dex/kpc. The (+8.5,+9) field exhibits a higher than expected metallicity, with a median [Fe/H]=-0.23, that might be related to a stronger presence of the X--shaped bulge structure along that line-of-sight. All fields exhibit an identical, strong decrease in velocity dispersion with increasing metallicity that is consistent with observations in similar minor-axis outer bulge fields. Additionally, the [O/Fe], [Si/Fe], and [Ca/Fe] versus [Fe/H] trends are identical among our three fields, and are in good agreement with past bulge studies. [abridged]Comment: Accepted for Publication in the Astrophysical Journal; 120 pages (main text ends on page 24); 22 figures (figures end on page 46); 6 tables; electronic versions of the tables can be made available upon request to author C. Johnso

    Light, Alpha, and Fe-Peak Element Abundances in the Galactic Bulge

    Get PDF
    C. I. Johnson, et al., “Light, Alpha, and Fe-Peak Element Abundances in the Galactic Bulge”, The Astronomical Journal, Vol. 148(4), September 2014. This version of record is available online at: http://iopscience.iop.org/article/10.1088/0004-6256/148/4/67/meta © 2014. The American Astronomical Society. All rights reserved. Printed in the U.S.AWe present radial velocities and chemical abundances of O, Na, Mg, Al, Si, Ca, Cr, Fe, Co, Ni, and Cu for a sample of 156 red giant branch stars in two Galactic bulge fields centered near (l,b)=(+5.25,-3.02) and (0,-12). The (+5.25,-3.02) field also includes observations of the bulge globular cluster NGC 6553. The results are based on high resolution (R~20,000), high signal-to-noise (S/N>70) FLAMES-GIRAFFE spectra obtained through the ESO archive. However, we only selected a subset of the original observations that included spectra with both high S/N and that did not show strong TiO absorption bands. The present work extends previous analyses of this data set beyond Fe and the alpha-elements Mg, Si, Ca, and Ti. While we find reasonable agreement with past work, the data presented here indicate that the bulge may exhibit a different chemical composition than the local thick disk, especially at [Fe/H]>-0.5. In particular, the bulge [alpha/Fe] ratios may remain enhanced to a slightly higher [Fe/H] than the thick disk and the Fe-peak elements Co, Ni, and Cu appear enhanced compared to the disk. There is also some evidence that the [Na/Fe] (but not [Al/Fe]) trends between the bulge and local disk may be different at low and high metallicity. We also find that the velocity dispersion decreases as a function of increasing [Fe/H] for both fields, and do not detect any significant cold, high velocity population. A comparison with chemical enrichment models indicates that a significant fraction of hypernovae are required to explain the bulge abundance trends, and that initial mass functions that are steep, top-heavy (and do not include strong outflow), or truncated to avoid including contributions from stars >40 solar masses are ruled out, in particular because of disagreement with the Fe-peak abundance data. [abridged]Peer reviewedFinal Published versio

    Evolution of Fluorine Abundances with the \nu-Process

    Get PDF
    We calculate the evolution of fluorine in the solar neighborhood with the \nu-process of core-collapse supernovae, the results of which are in good agreement with the observations of field stars. The \nu-process operating in supernovae causes the [F/O] ratio to plateau at [O/H] < -1.2, followed by a rapid increase toward [O/H] ~ -0.5 from the contribution of Asymptotic Giant Branch stars. The plateau value of [F/O] depends on the neutrino luminosity released by core-collapse supernovae and may be constrained by using future observations of field stars at low metallicities. For globular clusters, the handful of [F/O] measurements suggest that the relative contribution from low-mass supernovae is smaller in these systems than in the field.Comment: 4 pages, 1 figure, Accepted for publication in ApJ

    Azimuthal variations of gas-phase oxygen abundance in NGC 2997

    Get PDF
    13 pages, 17 figures, accepted to A&A Reproduced with permission from Astronomy & Astrophysics. © 2018 ESO.The azimuthal variation of the HII region oxygen abundance in spiral galaxies is a key observable for understanding how quickly oxygen produced by massive stars can be dispersed within the surrounding interstellar medium. Observational constraints on the prevalence and magnitude of such azimuthal variations remain rare in the literature. Here, we report the discovery of pronounced azimuthal variations of HII region oxygen abundance in NGC 2997, a spiral galaxy at approximately 11.3 Mpc. Using 3D spectroscopic data from the TYPHOON Program, we study the HII region oxygen abundance at a physical resolution of 125 pc. Individual HII regions or complexes are identified in the 3D optical data and their strong emission line fluxes measured to constrain their oxygen abundances. We find 0.06 dex azimuthal variations in the oxygen abundance on top of a radial abundance gradient that is comparable to those seen in other star-forming disks. At a given radial distance, the oxygen abundances are highest in the spiral arms and lower in the inter-arm regions, similar to what has been reported in NGC 1365 using similar observations. We discuss whether the azimuthal variations could be recovered when the galaxy is observed at worse physical resolutions and lower signal-to-noise ratios.Peer reviewe

    The impact of metallicity on nova populations

    Get PDF
    © 2021 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society.The metallicity of a star affects its evolution in a variety of ways, changing stellar radii, luminosities, lifetimes, and remnant properties. In this work, we use the population synthesis code binary_c to study how metallicity affects novae in the context of binary stellar evolution. We compute a 16-point grid of metallicities ranging from Z=104Z=10^{-4} to 0.03, presenting distributions of nova white dwarf masses, accretion rates, delay-times, and initial system properties at the two extremes of our 16-point metallicity grid. We find a clear anti-correlation between metallicity and the number of novae produced, with the number of novae at Z=0.03Z=0.03 roughly half that at Z=104Z=10^{-4}. The white dwarf mass distribution has a strong systematic variation with metallicity, while the shape of the accretion rate distribution is relatively insensitive. We compute a current nova rate of approximately 33 novae per year for the Milky Way, a result consistent with observational estimates relying on extra-Galactic novae but an under-prediction relative to observational estimates relying on Galactic novae. However, the shape of our predicted Galactic white dwarf mass distribution differs significantly to existing observationally derived distributions, likely due to our underlying physical assumptions. In M31, we compute a current nova rate of approximately 36 novae per year, under-predicting the most recent observational estimate of 6516+1565^{+15}_{-16}. Finally, we conclude that when making predictions about currently observable nova rates in spiral galaxies, or stellar environments where star formation has ceased in the distant past, metallicity can likely be considered of secondary importance compared to uncertainties in binary stellar evolution.Peer reviewedFinal Published versio

    The Origin of Elements from Carbon to Uranium

    Get PDF

    <i>miniPixD</i>: a compact sample analysis system which combines X-ray imaging and diffraction

    Get PDF
    This paper introduces miniPixD: a new, compact system that utilises transmission X-ray imaging and X-ray diffraction (XRD) to locate and identify materials of interest within an otherwise opaque volume. The system and the embodied techniques have utility in security screening, medical diagnostics, non-destructive testing (NDT) and quality assurance (QA). This paper outlines the design of the system including discussion on the choice of components and presents some data from relevant samples which are compared to other energy dispersive and angular dispersive XRD techniques

    Three-dimensional antiferromagnetic q-state Potts models: application of the Wang-Landau algorithm

    Full text link
    We apply a newly proposed Monte Carlo method, the Wang-Landau algorithm, to the study of the three-dimensional antiferromagnetic q-state Potts models on a simple cubic lattice. We systematically study the phase transition of the models with q=3, 4, 5 and 6. We obtain the finite-temperature phase transition for q= 3 and 4, whereas the transition temperature is down to zero for q=5. For q=6 there exists no order for all the temperatures. We also study the ground-state properties. The size-dependence of the ground-state entropy is investigated. We find that the ground-state entropy is larger than the contribution from the typical configurations of the broken-sublattice-symmetry state for q=3. The same situations are found for q = 4, 5 and 6.Comment: 9 pages including 9 eps figures, RevTeX, to appear in J. Phys.

    Sc and neutron-capture abundances in Galactic low- and high-α field halo stars

    Get PDF
    We determine relative abundance ratios for the neutron-capture elements Zr, La, Ce, Nd and Eu for a sample of 27 Galactic dwarf stars with −1.5 < [Fe/H] < −0.8. We also measure the iron-peak element Sc. These stars separate into three populations (low- and high-α halo and thick-disc stars) based on the [α/Fe] abundance ratio and their kinematics as discovered by Nissen & Schuster. We find differences between the low- and high-α groups in the abundance ratios of [Sc/Fe], [Zr/Fe], [La/Zr], [Y/Eu] and [Ba/Eu] when including Y and Ba from Nissen & Schuster. For all ratios except [La/Zr], the low-α stars have a lower abundance compared to the high-α stars. The low-α stars display the same abundance patterns of high [Ba/Y] and low [Y/Eu] as observed in present-day dwarf spheroidal galaxies, although with smaller abundance differences, when compared to the high-α stars. These distinct chemical patterns have been attributed to differences in the star formation rate between the two populations and the contribution of low-metallicity, low-mass asymptotic giant branch (AGB) stars to the low-α population. By comparing the low-α population with AGB stellar models, we place constraints on the mass range of the AGB stars
    corecore