470 research outputs found

    Trichoderma-Plant Root Colonization: Escaping Early Plant Defense Responses and Activation of the Antioxidant Machinery for Saline Stress Tolerance

    Get PDF
    Trichoderma spp. are versatile opportunistic plant symbionts which can colonize the apoplast of plant roots. Microarrays analysis of Arabidopsis thaliana roots inoculated with Trichoderma asperelloides T203, coupled with qPCR analysis of 137 stress responsive genes and transcription factors, revealed wide gene transcript reprogramming, proceeded by a transient repression of the plant immune responses supposedly to allow root colonization. Enhancement in the expression of WRKY18 and WRKY40, which stimulate JA-signaling via suppression of JAZ repressors and negatively regulate the expression of the defense genes FMO1, PAD3 and CYP71A13, was detected in Arabidopsis roots upon Trichoderma colonization. Reduced root colonization was observed in the wrky18/wrky40 double mutant line, while partial phenotypic complementation was achieved by over-expressing WRKY40 in the wrky18 wrky40 background. On the other hand increased colonization rate was found in roots of the FMO1 knockout mutant. Trichoderma spp. stimulate plant growth and resistance to a wide range of adverse environmental conditions. Arabidopsis and cucumber (Cucumis sativus L.) plants treated with Trichoderma prior to salt stress imposition show significantly improved seed germination. In addition, Trichoderma treatment affects the expression of several genes related to osmo-protection and general oxidative stress in roots of both plants. The MDAR gene coding for monodehydroascorbate reductase is significantly up-regulated and, accordingly, the pool of reduced ascorbic acid was found to be increased in Trichoderma treated plants. 1-Aminocyclopropane-1-carboxylate (ACC)-deaminase silenced Trichoderma mutants were less effective in providing tolerance to salt stress, suggesting that Trichoderma, similarly to ACC deaminase producing bacteria, can ameliorate plant growth under conditions of abiotic stress, by lowering ameliorating increases in ethylene levels as well as promoting an elevated antioxidative capacity

    Molecular evolution of the cytochrome c oxidase subunit 5A gene in primates

    Get PDF
    Abstract Background Many electron transport chain (ETC) genes show accelerated rates of nonsynonymous nucleotide substitutions in anthropoid primate lineages, yet in non-anthropoid lineages the ETC proteins are typically highly conserved. Here, we test the hypothesis that COX5A, the ETC gene that encodes cytochrome c oxidase subunit 5A, shows a pattern of anthropoid-specific adaptive evolution, and investigate the distribution of this protein in catarrhine brains. Results In a dataset comprising 29 vertebrate taxa, including representatives from all major groups of primates, there is nearly 100% conservation of the COX5A amino acid sequence among extant, non-anthropoid placental mammals. The most recent common ancestor of these species lived about 100 million years (MY) ago. In contrast, anthropoid primates show markedly elevated rates of nonsynonymous evolution. In particular, branch site tests identify five positively selected codons in anthropoids, and ancestral reconstructions infer that substitutions in these codons occurred predominantly on stem lineages (anthropoid, ape and New World monkey) and on the human terminal branch. Examination of catarrhine brain samples by immunohistochemistry characterizes for the first time COX5A protein distribution in the primate neocortex, and suggests that the protein is most abundant in the mitochondria of large-size projection neurons. Real time quantitative PCR supports previous microarray results showing COX5A is expressed in cerebral cortical tissue at a higher level in human than in chimpanzee or gorilla. Conclusion Taken together, these results suggest that both protein structural and gene regulatory changes contributed to COX5A evolution during humankind\u27s ancestry. Furthermore, these findings are consistent with the hypothesis that adaptations in ETC genes contributed to the emergence of the energetically expensive anthropoid neocortex

    Evaluation of indigenous Trichoderma isolates from Manipur as biocontrol agent against Pythium aphanidermatum on common beans

    Get PDF
    Pythium aphanidermatum is one of the common causal pathogen of damping-off disease of beans (Phaseolus vulgaris L.) grown in Manipur. A total of 110 indigenous Trichoderma isolates obtained from North east India were screened for their biocontrol activity which can inhibit the mycelial growth of P. aphanidermatum, the causal organism of damping-off in beans. Out of the total isolates, 32% of them showed strong antagonistic activity against P. aphanidermatum under in vitro condition and subsequently 20 best isolates were selected based on their mycelial inhibition capacity against P. aphanidermatum for further analysis. Different biocontrol mechanisms such as protease, chitinase, β-1,3-glucanase activity, cellulase and production of volatile and non-volatile compounds were also assayed. Based on their relative biocontrol potency, only three indigenous Trichoderma isolates (T73, T80 and T105) were selected for pot culture experiment against damping-off diseases in common beans. In greenhouse experiment, Trichoderma isolates T-105 significantly reduced the pre- and post-emergence damping-off disease incidence under artificial infection with P. aphanidermatum and showed highest disease control percentage

    Genomic and physiological footprint of the Deepwater Horizon oil spill on resident marsh fishes

    Get PDF
    The biological consequences of the Deepwater Horizon oil spill are unknown, especially for resident organisms. Here, we report results from a field study tracking the effects of contaminating oil across space and time in resident killifish during the first 4 mo of the spill event. Remote sensing and analytical chemistry identified exposures, which were linked to effects in fish characterized by genome expression and associated gill immunohistochemistry, despite very low concentrations of hydrocarbons remaining in water and tissues. Divergence in genome expression coincides with contaminating oil and is consistent with genome responses that are predictive of exposure to hydrocarbon-like chemicals and indicative of physiological and reproductive impairment. Oil-contaminated waters are also associated with aberrant protein expression in gill tissues of larval and adult fish. These data suggest that heavily weathered crude oil from the spill imparts significant biological impacts in sensitive Louisiana marshes, some of which remain for over 2 mo following initial exposures

    The late-time behaviour of vortic Bianchi type VIII Universes

    Full text link
    We use the dynamical systems approach to investigate the Bianchi type VIII models with a tilted γ\gamma-law perfect fluid. We introduce expansion-normalised variables and investigate the late-time asymptotic behaviour of the models and determine the late-time asymptotic states. For the Bianchi type VIII models the state space is unbounded and consequently, for all non-inflationary perfect fluids, one of the curvature variables grows without bound. Moreover, we show that for fluids stiffer than dust (1<γ<21<\gamma<2), the fluid will in general tend towards a state of extreme tilt. For dust (γ=1\gamma=1), or for fluids less stiff than dust (0<γ<10<\gamma< 1), we show that the fluid will in the future be asymptotically non-tilted. Furthermore, we show that for all γ1\gamma\geq 1 the universe evolves towards a vacuum state but does so rather slowly, ρ/H21/lnt\rho/H^2\propto 1/\ln t.Comment: 19 pages, 3 ps figures, v2:typos fixed, refs and more discussion adde

    Approximating Mexican highways with slime mould

    Full text link
    Plasmodium of Physarum polycephalum is a single cell visible by unaided eye. During its foraging behavior the cell spans spatially distributed sources of nutrients with a protoplasmic network. Geometrical structure of the protoplasmic networks allows the plasmodium to optimize transport of nutrients between remote parts of its body. Assuming major Mexican cities are sources of nutrients how much structure of Physarum protoplasmic network correspond to structure of Mexican Federal highway network? To find an answer undertook a series of laboratory experiments with living Physarum polycephalum. We represent geographical locations of major cities by oat flakes, place a piece of plasmodium in Mexico city area, record the plasmodium's foraging behavior and extract topology of nutrient transport networks. Results of our experiments show that the protoplasmic network formed by Physarum is isomorphic, subject to limitations imposed, to a network of principle highways. Ideas and results of the paper may contribute towards future developments in bio-inspired road planning

    Characterizing genomic alterations in cancer by complementary functional associations.

    Get PDF
    Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment. We used REVEALER to uncover complementary genomic alterations associated with the transcriptional activation of β-catenin and NRF2, MEK-inhibitor sensitivity, and KRAS dependency. REVEALER successfully identified both known and new associations, demonstrating the power of combining functional profiles with extensive characterization of genomic alterations in cancer genomes
    corecore