35 research outputs found
On the Discrete Kinetic Theory for Active Particles. Modelling the Immune Competition
This paper deals with the application of the mathematical kinetic theory for active particles, with discrete activity states, to the modelling of the immune competition between immune and cancer cells. The first part of the paper deals with the assessment of the mathematical framework suitable for the derivation of the models. Two specific models are derived in the second part, while some simulations visualize the applicability of the model to the description of biological events characterizing the immune competition. A final critical outlines some research perspectives
Kinetic Theory Approach to Modeling of Cellular Repair Mechanisms under Genome Stress
Under acute perturbations from outer environment, a normal cell can trigger cellular self-defense mechanism in response to genome stress. To investigate the kinetics of cellular self-repair process at single cell level further, a model of DNA damage generating and repair is proposed under acute Ion Radiation (IR) by using mathematical framework of kinetic theory of active particles (KTAP). Firstly, we focus on illustrating the profile of Cellular Repair System (CRS) instituted by two sub-populations, each of which is made up of the active particles with different discrete states. Then, we implement the mathematical framework of cellular self-repair mechanism, and illustrate the dynamic processes of Double Strand Breaks (DSBs) and Repair Protein (RP) generating, DSB-protein complexes (DSBCs) synthesizing, and toxins accumulating. Finally, we roughly analyze the capability of cellular self-repair mechanism, cellular activity of transferring DNA damage, and genome stability, especially the different fates of a certain cell before and after the time thresholds of IR perturbations that a cell can tolerate maximally under different IR perturbation circumstances
A multi-element psychosocial intervention for early psychosis (GET UP PIANO TRIAL) conducted in a catchment area of 10 million inhabitants: study protocol for a pragmatic cluster randomized controlled trial
Multi-element interventions for first-episode psychosis (FEP) are promising, but have mostly been conducted in non-epidemiologically representative samples, thereby raising the risk of underestimating the complexities involved in treating FEP in 'real-world' services
On the discrete kinetic theory for active particles.
This paper deals with the application of the mathematical kinetic theory for active particles, with discrete activity states, to the modelling of the immune competition between immune and cancer cells. The first part of the paper deals with the assessment of the mathematical framework suitable for the derivation of the models. Two specific models are derived in the second part, while some simulations visualize the applicability of the model to the description of biological events characterizing the immune competition. A final critical outlines some research perspectives
On a kinetic theory approach to modelling degradation phenomena in conservation sciences
This paper deals with the modelling of degradation phenomena for works of art under the action applied by external agents.
The analysis is based on a suitable development of the methods of the kinetic theory for active particles. The model consists in an evolution equation for the probability distribution of the degradation stage. The interpretation of empirical data provides the identification of the parameters of the model and a quantitative prediction of degradation events
A mathematical model of immune competition related to cancer dynamics
This paper deals with the qualitative analysis of a model describing the competition among cell populations, each of them expressing a peculiar cooperating and organizing behavior. The mathematical framework in which the model has been developed is the kinetic theory for active particles. The main result of this paper is concerned with the analysis of the asymptotic behavior of the solutions. We prove that, if we are in the case when the only equilibrium solution if the trivial one, the system evolves in such a way that the immune system, after being activated, goes back toward a physiological situation while the tumor cells evolve as a sort of progressing travelling waves characterizing a typical equilibrium/latent situation