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Abstract

This paper deals with the development of a mathematical discrete kinetic theory to model the dynamics of large systems of
interacting active particles whose microscopic state includes not only geometrical and mechanical variables (typically position
and velocity), but also peculiar functions, called activities, which are able to modify laws of classical mechanics. The number of
the above particles is sufficiently large to describe the overall state of the system by a suitable probability distribution over the
microscopic state, while the microscopic state is discrete. This paper deals with a methodological approach suitable to derive the
mathematical tools and structures which can be properly used to model a variety of models in different fields of applied sciences.
The last part of the paper outlines some research perspectives towards modelling.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction and guiding lines

An interesting research field of applied mathematics is the modelling of large systems of interacting entities whose
microscopic state includes, in addition to mechanical variables, also additional variables related to their somehow
organized and even “intelligent” behavior. These entities interact among themselves – individual based interactions –
thus exchanging information which modify their individual state.

Mathematical methods can be developed to describe by equations the collective behavior starting from a description
of microscopic interactions. Methods of the mathematical kinetic theory can be properly developed towards the
above target. It is a quite natural approach considering that classical models of the kinetic theory, e.g. the Boltzmann
and Vlasov equations, lead to models which describe the collective behavior of classical particles which cannot be
individually identified in a large system, while individual interactions are modelled within the framework of classical
mechanics.
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On the other hand, systems dealt with in this paper are characterized by the additional difficulty that interactions
do not follow rules of classical mechanics. Moreover the identification of the microscopic state itself needs a deep
analysis of physical systems characterized by a high level of complexity.

The application of methods of the mathematical kinetic theory to the modelling and simulation of complex systems
in applied sciences is documented in several papers related, for instance, to traffic flow modelling [1,2], social systems
[3–5], evolution of personal feelings [6,7] and modelling multicellular systems with application to the immune
competition [8–11].

Additional bibliographies can be recovered in papers [12,13], devoted to the methodological aspects on the
derivation of kinetic equations, as well as in [14,15] concerning the mathematical description of living fluids and
tissues.

Some pioneering papers have proposed suitable generalizations and developments of the above mathematical
approach to model large complex systems in different fields of applied sciences. Among others, Prigogine and Herman
proposed a mathematical theory of traffic flow by Boltzmann type equations [16]. The same approach has been applied
to model the social behavior of colonies of insects by Jager and Segel [17], or cell populations with special attention
to the immune competition [18].

This paper is motivated by the mathematical approach proposed in [5], where a class of evolution equations was
proposed to deal with large systems of interacting individuals such that the microscopic state is a discrete variable.
Remark that the hint to analyze this type of systems is motivated by modelling requirements rather than by the aim of
reducing computational complexity.

The contents refer to the modelling of large complex systems by mathematical methods of the kinetic theory.
These systems are mathematically characterized by the fact that the number of variables to describe the evolution of
the system is greater than the number of evolution equations. As a matter of fact, microscopic interactions between
the entities – called active particles – make them change their microscopic state, which is not only characterized by
mechanical properties, but also by a social or biological discrete variable called activity. Thus we have to define the
activity of the entities, which cannot generally be described by the standard evolution equations.

This paper deals with the above mentioned topics with the aim of providing a variety of mathematical tools to be
used towards modelling in applied sciences. Therefore the contents refer to methodological aspects, while specific
applications will be dealt with in the forthcoming papers as anticipated in the last section.

The contents are organized into four more sections which follow this introduction. Specifically:
Section 2 deals with a relatively more detailed description of the physical systems which have been briefly outlined

above. Some technical definitions are introduced first to identify the terminology used in the following. Secondly, the
statistical description of the system by means of discrete generalized distribution functions is introduced. This means
defining the microscopic state of the interacting entities and the probability distribution over such a state. Macroscopic
quantities are obtained by suitable averaged moments of the above distribution functions.

Section 3 develops the derivation of a mathematical framework suitable to model the class of physical systems
we are dealing with. The framework consists in a suitable set of nonlinear integro-differential or partial differential
equations, which can be particularized into mathematical models once the description of microscopic interactions has
been properly modelled. One particular case is given.

Section 4 deals with some additional generalizations. The first part is devoted to the discretization of the velocity
variable, and, in general, to the discretization of the whole microscopic state. The second part deals with the modelling
of systems of active particles which have the ability to produce particles in a new population.

Section 5 develops a critical analysis on the applicability of the tools derived in this paper. Then some applications
are indicated as conceivable research perspectives.

2. Some definitions and statistical representation

Consider the class of physical systems briefly described in Section 1, e.g. a system constituted by a large number
of active particles organized into n populations labelled by the subscript i = 1, . . . , n. In this system, each population
is characterized by a different way of organizing their peculiar activities as well as interactions with the other
populations. Some notations and definitions have to be stated to define precisely the microscopic state of each particle
and the statistical description of the system.
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Definition 2.1. The variable in charge to describe the state of any active particle is denoted by the variable w and
is called the microscopic state. This microscopic state is split into the geometrical microscopic state, the mechanical
microscopic state and the social or biological microscopic state called activity. In our relatively simple case, we
consider the microscopic variable

w = {x, v,u} ∈ Dw = Dx × Dv × Du, (2.1)

where x is the position of the active particle, v is its linear velocity, and u its activity.

As mentioned in Section 1, we are interested in active particles characterized by a discrete activity:

u ∈ Iu = {u1, . . . ,uh, . . . ,uH }. (2.2)

Therefore we introduce a mixed continuous/discrete microscopic variable

wh
= {x, v,u = uh} ∈ DH

w = Dx × Dv × Iu, (2.3)

in view of the mathematical framework which will be derived in the sections that follow. Remark that also the variables
x and v can be considered discrete according to modelling requirements as will be shown in Section 4.

Definition 2.2. The description of the overall state of the system is given by the set of functions

f = { f h
i }, (2.4)

where each element f h
i = fi (t,wh) = f h

i (t, x, v), for i = 1, . . . , n and h = 1, . . . , H , will be called the discrete
generalized distribution function corresponding to the i-th population and the h-th activity uh .

Fig. 1. Representation of the discrete states.

Each element of the system can be viewed as a node of a grid which schematically represents the whole system, as
shown in Fig. 1. The distribution function fi related to the i-th population is then formally given by

fi (t,w) = fi (t, x, v,u) =

H∑
h=1

f h
i (t, x, v)δ(u − uh), (2.5)

where δ is the Dirac’s delta function.
If each f h

i is known, then macroscopic variables can be computed, under suitable integrability properties, as
moments weighted by the above distribution functions. For instance, the zero-th order moments of the functions
f h
i provide information on the number density for each population:

Definition 2.3. The number density nh
i is the number density of active particles of the i-th population with activity uh

at time t and position x. nh
i is also called the local size and is defined by

nh
i (t, x) =

∫
Dv

f h
i (t, x, v)dv. (2.6)



936 A. Chauviere, I. Brazzoli / Mathematical and Computer Modelling 43 (2006) 933–944

The sum over all the activities uh provides the number density ni (t, x) for the i-th population. Then the total
number density n(t, x) at the time t at position x, is given by

n(t, x) =

n∑
i=1

ni (t, x) =

n∑
i=1

H∑
h=1

nh
i (t, x). (2.7)

Integration over the volume Dx containing the particles gives the total size N (t) of all populations:

N (t) =

∫
Dx

n(t, x)dx, (2.8)

which can also be calculated by the sum of all the populations i whose total size will be denoted Ni (t).
Consider now first order moments of the functions f h

i . They provide either linear mechanical macroscopic
quantities, or linear activity macroscopic quantities. For instance, the local flux of the quantity of movement of the
i-th population with activity uh is given by

Qh
i (t, x) =

∫
Dv

v f h
i (t, x, v)dv. (2.9)

As for the number density, the local flux (denoted Qi ) of the quantity of movement for the i-th population, is
obtained by summing over all the activities, so that

Qi (t, x) =

H∑
h=1

Qh
i (t, x), (2.10)

while local mean flow linked to Qi is

qi (t, x) =
Qi (t, x)
ni (t, x)

. (2.11)

Focusing on activity terms, linear moments of the activity uh related to the i- th population can be called h-th local
activations, and are computed as follows:

Ah
i (t, x) = uh

∫
Dv

f h
i (t, x, v)dv. (2.12)

The local activation for the i-th population is thus given by

Ai (t, x) =

H∑
h=1

Ah
i (t, x), (2.13)

while h-th local activation densities and local activation density related to the i-th population are respectively defined
by

ah
i (t, x) =

Ah
i (t, x)

ni (t, x)
, and ai (t, x) =

H∑
h=1

ah
i (t, x). (2.14)

Similar calculations can be developed with higher order moments if required by applications. For instance, local
quadratic energy and its associated density are defined as follows:

Ei (t, x) =

H∑
h=1

∫
Dv

v2 f h
i (t, x, v)dv, and ei (t, x) =

Ei (t, x)
ni (t, x)

. (2.15)

Therefore, the local quadratic activity and its associated density

Ei (t, x) =

H∑
h=1

u2
h

∫
Dv

f h
i (t, x, v)dv, and εi (t, x) =

Ei (t, x)
ni (t, x)

, (2.16)
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can be computed as second order moments. The above notations have been used in the case of discretization of the
activity variable. Analogous calculations can be developed when the other variables, space and/or velocity, of the
microscopic state are also discrete. One has simply to substitute integrations by finite sums over the subscript of
the discrete variable.

3. Mathematical framework

This section deals with the derivation of a general framework for the evolution of the discrete distribution functions
f h
i . The modelling of a suitable framework for microscopic interactions is preliminary to the derivation of these

evolution equations. The analysis we propose refers to localized interactions. Consider active particles distributed in
the domain Dx. Interactions between a candidate (or test) particle and a field particle appear when the field one enters
into the action domain Λ of the candidate (or test) one, which is relatively small relative to the local density, so that
only binary encounters are relevant.

Different kinds of interactions need to be taken into account. Localized interactions can be classified in:

• Conservative interactions which modify the state of the interacting particles, but not their number;
• Proliferating or destructive interactions which generate the death or birth of active particles due to pair interactions.

A schematic representation of these interactions are proposed in Figs. 2–4.
Consider first the modelling of microscopic conservative interactions. They are based on the knowledge of the

following two quantities:

• The encounter rate, denoted ηi j , which gives the number of encounters per unit of time between two interacting
particles of respective populations i and j ;

• The transition density function, denoted ϕ pq
i j (h), which is the probability density that a candidate particle of the

i-th population with microscopic state wp
1 = {x1, v1,up} falls into the state wh

= {x, v,uh}, after an interaction
with a field particle of the j-th population with state wq

2 = {x2, v2,uq}.

Fig. 2. Representation of conservative encounters.

Consider now the modelling of microscopic non-conservative interactions. Specifically we deal here with the
modelling of self-proliferation (or self-destruction) phenomena. They can be modelled by:

• The source/sink distribution function, denoted ψhq
i j , which is, for each encounter between a test particle of the i-th

population in state wh with a field particle of the j-th population with state wq
2 , the number of particles generated

(in the case of proliferating interactions) or destroyed (in the case of destructive ones) with population and state of
the test particle.

This function is negative in the case of destructive interactions and positive for proliferating ones. In the destructive
case, test particles are simply destroyed as represented in Fig. 3. In the proliferating case, particles are assumed to
be generated with microscopic state wh in the population of the test particle as represented in Fig. 4. Note that
proliferation and/or destruction occur with the above defined encounter rate.
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Fig. 3. Representation of destructive encounters.

Fig. 4. Representation of proliferating encounters.

The terms ηi j , ϕ
pq
i j (h) and ψhq

i j have to be particularized according to the phenomenology of the physical problem.
However, some technical assumptions are preliminary to the derivation of specific models. In detail, it will be assumed
that:

(i) The encounter rate depends on the relative velocity of the interacting particles;
(ii) Interactions which modify the activities are not influenced by mechanical quantities besides the encounter rate;

(iii) Interactions which modify the mechanical state may also be influenced by the activities of the interacting pair.

Moreover, the assumption of short range interactions leads to consider interacting and post-interaction particles
localized at the same point. According to these assumptions, the following particularizations are proposed:

• The encounter rate is proportional to the relative velocity:

ηi j (·) = ci j |v1 − v2|δ(x1 − x2), (3.1)

where ci j is a constant depending on the populations, x1 and v1 are the position and velocity of the candidate (or
test) particle, whereas the subscript 2 denotes these quantities for the field particle.

The encounter rate could also depend on the states p and q of the interacting pair if required by the modelling,
simply considering the constant cpq

i j into (3.1).

• The transition density function is given by the product of the transition density Mpq
i j related to the mechanical

variables, with the discrete transition density B pq
i j (h) related to the activity:

ϕ
pq
i j (h)(·) = Mpq

i j (v1, v2; v|up,uq)B pq
i j (h)δ(x − x1). (3.2)

The above transition density functions have the structure of a probability density with respect to their outgoing
variables. That leads to the following properties:

∀ i, j, ∀ p, q :

H∑
h=1

B pq
i j (h) = 1,∫

Dv

Mpq
i j (v1, v2; v)dv = 1 ∀ v1, v2.

(3.3)

Remark that the output of the mechanical interactions is assumed to depend on velocity and activity, while the
output of interactions related to the activity depends on the activity only.
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• The source/sink distribution function is given by ψhq
i j (·) = µ

hq
i j , where µhq

i j is a constant depending on populations
and activities of the interacting pair.

The knowledge of the above quantities allows us to derive, by methods of the mathematical kinetic theory, a class
of evolution equations for the set f of distribution functions f h

i . Such a mathematical model can be formally written,
within the framework of the discrete kinetic theory, as follows:

L f h
i = N f h

i , (3.4)

for i = 1, . . . , n and h = 1, . . . , H , where L and N denote suitable linear and nonlinear operators. In the absence of
external forces, L is the total time derivative

L =
∂

∂t
+ v · ∇x. (3.5)

On the other hand, the operator N has to be split into three parts. The first two are related to conservative
interactions and correspond to classical inflow and outflow of active particles into the elementary volume of the
state space. The third one is the non-conservative term which corresponds to the proliferation and/or destruction of
these particles.

The evolution equation, for each f h
i , is obtained, similarly to the case of the Boltzmann equation, by considering

the variation of the test particles number of the i-th population, with microscopic state wh , again in the elementary
state volume. Equating the variation rate of the test particles to the fluxes of particles which reach and leave such a
state due to interactions, and the source term, leads to the balance equation:(

∂

∂t
+ v · ∇x

)
f h
i = Ch+

i [f] − Ch−

i [f] + Ih
i [f]. (3.6)

We first focus on Ch+

i [f] which is the number of test particles of the i-th population appearing in the state wh –
per unit of time and volume – after interactions between candidate particles of the same population with microscopic
state wp

1 , and field particles of the j-th population with microscopic state wq
2 . Denoting D = Λ × Dv, where Λ is the

interaction domain of the candidate particle and Dv is the domain of the velocity, and considering the relations (3.1)
and (3.2), one has:

Ch+

i [f](t, x, v) =

n∑
j=1

H∑
p,q=1

∫
D×D

ci j |v1 − v2|Mpq
i j (v1, v2; v|up,uq)B pq

i j (h)

× f p
i (t, x1, v1) f q

j (t, x2, v2)δ(x − x1)δ(x1 − x2)dx1dx2dv1dv2, (3.7)

which can be written as follows:

Ch+

i [f](t, x, v) =

n∑
j=1

H∑
p,q=1

∫
Dv×Dv

ci j |v1 − v2|Mpq
i j (v1, v2; v|up,uq)B pq

i j (h)

× f p
i (t, x, v1) f q

j (t, x, v2)dv1dv2. (3.8)

The term Ch−

i [f] is the number of test particles which leave the state wh , per unit of time and volume, after having
interacted with field particles with state wq

2 . It follows, by the same kind of calculations as for the previous term, that

Ch−

i [f](t, x, v) = f h
i (t, x, v)

n∑
j=1

H∑
q=1

∫
Dv

ci j |v − v2| f q
j (t, x, v2)dv2. (3.9)

Analogous calculations for the source term Ih
i [f], referring to the proliferating or destructive interactions between

test particles in the microscopic state wh , and field particles with state wq
2 , yields:

Ih
i [f](t, x, v) = f h

i (t, x, v)
n∑

j=1

H∑
q=1

∫
Dv

ci j |v − v2|µ
hq
i j f q

j (t, x, v2)dv2. (3.10)
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Substituting into Eq. (3.6) yields finally the following system of n × H integro-differential equations:(
∂

∂t
+ v · ∇x

)
f h
i (t, x, v) =

n∑
j=1

H∑
p,q=1

∫
Dv×Dv

ci j |v1 − v2|B pq
i j (h)

× Mpq
i j (v1, v2; v|up,uq) f p

i (t, x, v1) f q
j (t, x, v2)dv1dv2

− f h
i (t, x, v)

n∑
j=1

H∑
q=1

∫
Dv

ci j |v − v2|

[
1 − µ

hq
i j

]
f q

j (t, x, v2)dv2. (3.11)

3.1. Models with dominant activity interactions

The above model can be simplified referring to physical situations where some phenomena can be neglected with
respect to some others. Consider the case where particles are homogeneously distributed in space, with uniform
or constant in time distribution over the velocity. The evolution equations of such systems are obtained integrating
Eqs. (3.11) over the domain of the velocity variable, taking into account the assumption on the distribution function
that is written

f h
i (t, v) = fi (t, v,u = uh) = f a,h

i (t)P(v),
∫

Dv

P(v)dv = 1, (3.12)

uniform in the space variable.
Using this assumption and the property (3.3) concerningMpq

i j , and integrating over the velocity domain Dv yields
the following class of ordinary differential equations:

d
dt

f a,h
i =

n∑
j=1

H∑
p,q=1

ηa
i jB

pq
i j (h) f a,p

i f a,q
j − f a,h

i

n∑
j=1

H∑
q=1

ηa
i j

[
1 − µ

hq
i j

]
f a,q

j , (3.13)

where

ηa
i j =

∫
Dv×Dv

ci j |v1 − v2|P(v1)P(v2)dv1dv2, (3.14)

while the notation f a,h
i denotes f a,h

i (t). In the static case, the probability P(v) is simply the Dirac’s function at
the particular value v = 0. In this case, ηi j is taken as a constant ci j depending only on populations i and j of the
interacting pair, that leads simply to ηa

i j = ci j .

4. Some generalizations

This section deals with some generalizations of the mathematical framework developed in Section 3. Specifically,
and bearing in mind applications, we consider two types of generalizations: (i) a mathematical framework for discrete
space and/or velocity variables and (ii) the modelling of generation of particles in a population different from the ones
of the interacting pair. These generalizations may be useful in various fields of applied sciences, but specifically in
biology [14] where active particles are cells which may be constrained to move along selected directions, and/or cell
interactions between pairs of two populations may generate cells in a new population identified by a different genetic
characterization.

4.1. Framework for discrete microscopic variables

Consider the general case in which the evolution in space cannot be neglected. As mentioned above, specific
modelling may require the use of discrete microscopic variables rather than continuous ones.

As a first approach, let us consider a discrete velocity variable with a left continuous space variable. According to
the following discretization of the velocity

v ∈ Iv = {v1, . . . , vk, . . . , vK }, (4.1)
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the distribution function for the i-th population – given by (2.5) – is now formally written as follows:

fi (t,w) = fi (t, x, v,u) =

K∑
k=1

H∑
h=1

f kh
i (t, x)δ(v − vk)δ(u − uh). (4.2)

A mixed continuous/discrete microscopic variable

wkh
= {x, v = vk,u = uh} ∈ DK H

w = Dx × Iv × Iu, (4.3)

is introduced as in Section 2.
In this case, the encounter rate ηi j and the transition probability density ϕ pq

i j (h) are particularized by (3.1) and
(3.2), while the source/sink distribution function remains unchanged. Taking into account the discretization of the
velocity, the following expressions are obtained:
• Encounter rate:

ηi j (·) = ci j |vr − vs |δ(x1 − x2). (4.4)

• Transition probability density:

ϕ
pq
i j (h)(·) = Mσ

i j (vr , vs; vk |up,uq)B pq
i j (h)δ(x − x1), (4.5)

where σ = {r, s, p, q} and

∀ i, j, ∀ σ :

K∑
k=1

Mσ
i j (vr , vs; vk) = 1 and

H∑
h=1

B pq
i j (h) = 1. (4.6)

The balance equation is obtained by following the reasoning of Section 3, considering the variation of the active
particles number with state wkh in the elementary state volume. This equation is characterized by the same structure(

∂

∂t
+ vk · ∇x

)
f kh
i = Ckh+

i [f] − Ckh−

i [f] + Ikh
i [f]. (4.7)

Therefore performing calculations analogous to those we have seen in Section 3 yields the following system of
n × K × H partial differential equations:(

∂

∂t
+ vk · ∇x

)
f kh
i =

n∑
j=1

∑
σ

ci j |vr − vs |Mσ
i j (vr , vs; vk |up,uq)B pq

i j (h) f r p
i f sq

j

− f kh
i

n∑
j=1

K∑
s=1

H∑
q=1

ci j |vk − vs |

[
1 − µ

hq
i j

]
f sq

j , (4.8)

where f kh
i = f kh

i (t, x).
Consider now the general case with a complete discrete microscopic variable. In addition to the discretization of

the velocity variable proposed above, we introduce the following discretization of the space variable:

x ∈ Ix = {x1, . . . , x`, . . . , xL}. (4.9)

The formal expression of the distribution function related to the i-th population is thus:

fi (t,w) = fi (t, x, v,u) =

L∑
`=1

K∑
k=1

H∑
h=1

f `kh
i (t)δ(x − x`)δ(v − vk)δ(u − uh). (4.10)

.
As mentioned in the introduction of this section, specific modelling has to be developed according to the system

we are dealing with. As an example, when specific areas are modelled by a discrete space variable, the role of the
velocity may be in some special cases not relevant. Then the distribution function is formally written as follows:

fi (t, x,u) =

L∑
`=1

H∑
h=1

f `hi (t)δ(x − x`)δ(u − uh). (4.11)

Technical calculations leads to a n × L × H system of ordinary differential equations.



942 A. Chauviere, I. Brazzoli / Mathematical and Computer Modelling 43 (2006) 933–944

4.2. Models with change of population

Various complex systems of active particles include the ability to generate new particles in a population (and/or
a state) different from the ones of the interacting pair. As an example of greater interest in mathematical modelling,
human healthy cells may change their own genetic structure due to mutations caused by a tumoral environment. The
mathematical framework proposed in Section 3 is still relevant to model this kind of phenomenon, but the expressions
of the transition density and source/sink distribution functions are not still valid.

Consider first the case of conservative encounters. In this case, the candidate particle falls into the population and
state of the test particle after an interaction with a field particle:

The transition density function ϕ pq
k j (i, h) needs to be introduced. It denotes the probability density that the candidate

particle of the k-th population with state wp
1 falls, with state wh , into the population i , after an interaction with a field

particle of the j-th population with state wq
2 (see Fig. 5).

Using assumptions analogous to those proposed in Section 3 allows us to write this transition density function as
the product of the transition densities related to mechanical and activity variables. Precisely, ϕ pq

k j (i, h) is given by the

expression (3.2) written for the population k and j , with a new discrete probability density B pq
k j (i, h) which satisfies

the probability density relation

∀ k, j, ∀ p, q :

n∑
i=1

H∑
h=1

B pq
k j (i, h) = 1. (4.12)

This discrete probability density is the generalization of B pq
i j (h), which can be recovered by taking B pq

k j (i, h) = 0 for
each k 6= i .

Fig. 5. Representation of conservative encounters.

Consider now non-conservative encounters, related to the source/sink distribution function. It is useful splitting
this function into proliferating and destructive terms. As a matter of fact, destructive encounters between test particles
of the i-th population in state wh , with field particles of the j-th population with state wq

2 , still refer to destruction of

the test particles as described in Fig. 3. Thus they are modelled in the way proposed in Section 3 by ψhq
i j (·) = −ξ

hq
i j ,

where ξhq
i j is a positive constant.

Consider now the proliferating encounter between a candidate particle of the k-th population in state wp
1 , with a

field particle of the j-th population in state wq
2 , in which a particle is created in the i-th population with state wh (see

Fig. 6):
As for the transition density function, the following source distribution function

ψ
pq
k j (i, h)(·) = ζ

pq
k j (i, h)δ(x − x1), (4.13)

needs to be introduced, where the proliferation function ζ pq
k j (i, h) is positive, and the Dirac’s function over the space

variable results from the assumption on localized interactions. This expression of the source distribution function also
allows us to model proliferation with change of state only. One has simply to take ζ pq

k j (i, h) = 0 for each k 6= i ,

e.g. considering the proliferation function ζ pq
i j (h).
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Fig. 6. Representation of proliferating encounters.

Using this type of modelling allows us to compute each term in the balance equation (3.6). Specifically, the quantity
Ch+

i [f] related to conservative interactions is now given by the following expression

Ch+

i [f](t, x, v) =

n∑
k, j=1

H∑
p,q=1

∫
Dv×Dv

ck j |v1 − v2|Mpq
k j (v1, v2; v|up,uq)B pq

k j (i, h)

× f p
k (t, x, v1) f q

j (t, x, v2)dv1dv2, (4.14)

while Ch−

i [f] remains unchanged. Concerning the quantities related to non-conservative interactions, they are split into
proliferating and destructive processes, as follows:

Ih
i [f] = Ih+

i [f] − Ih−

i [f], (4.15)

where

Ih−

i [f](t, x, v) = f h
i (t, x, v)

n∑
j=1

H∑
q=1

∫
Dv

ci j |v − v2|ξ
hq
i j f q

j (t, x, v2)dv2, (4.16)

and

Ih+

i [f](t, x, v) =

n∑
k, j=1

H∑
p,q=1

∫
Dv×Dv

ck j |v1 − v2|ζ
pq

k j (i, h) f p
k (t, x, v1) f q

j (t, x, v2)dv1dv2. (4.17)

Finally, substituting these above expressions into (3.6) yields the evolution equations:(
∂

∂t
+ v · ∇x

)
f h
i (t, x, v) =

n∑
k, j=1

H∑
p,q=1

∫
Dv×Dv

ck j |v1 − v2|

×

[
Mpq

k j (v1, v2; v|up,uq)B pq
k j (i, h)+ ζ

pq
k j (i, h)

]
f p
k (t, x, v1) f q

j (t, x, v2)dv1dv2

− f h
i (t, x, v)

n∑
j=1

H∑
q=1

∫
Dv

ci j |v − v2|

[
1 + ξ

hq
i j

]
f q

j (t, x, v2)dv2, (4.18)

which technically differ from the expression delivered by (3.11).

5. Critical analysis and perspectives

This paper has developed a general mathematical framework for systems of interacting active particles such that
individual based interactions modify their microscopic state. Such a state includes, in addition to position and velocity,
also a specific additional variable, called activity, which models the ability of organizing the dynamics of the particles.

The main characteristic of the above system is that the microscopic state is discrete. The analysis has been first
developed when the activity is discrete, while space and velocity are allowed to be continuous. Then the generalization
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to the case of fully discrete microscopic variables is performed. Motivations to provide such a framework have been
given in Section 1 and in paper [5] which initiated this research line.

The contents have been developed leaving in mind conceivable modelling applications related to complex systems
in applied sciences, which can be achieved after a detailed modelling of the various terms which mathematically
describe microscopic interactions.

Therefore, this paper is proposed as the first one of a project which exploits the above mentioned framework
towards modelling. Specifically the first application is going to be devoted to the modelling of the immune competition
with special attention to the interaction between tumor and immune cells. The existing literature in the field can be
recovered in the already cited papers [13] and [14]. In the field of biological sciences, motivations can be recovered
in the paper by Jager and Segel [17], but also, among others, by Greller et al. [19], who link the discrete state to
subsequent states of progressing cells from the normal state to the metastatic one. Additional literature can be found
in the special issue [20].

Finally, it is worth stressing that the analysis developed in this paper offers a mathematical framework to be
specialized into models derived after the modelling of microscopic interactions. It is not a simple task considering
the difficulty in dealing with mathematical models of living matter [21,22]. Various authors [23–25] suggest to
develop new mathematical approaches towards a game theory suitable to describe the output of the interaction of
active particles. Indeed, this approach defines a relevant guiding line along the above mentioned research perspective.
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