6,112 research outputs found

    Deuteron-deuteron collision at 160 MeV

    Get PDF
    The experiment was carried out using BINA detector at KVI in Groningen. For the first time an extensive data analysis of the data collected in back part of the detector is presented, where a clusterization method is utilized for angular and energy information. We also present differential cross-sections for the (dd→\rightarrowdpn) breakup reaction within \textit{dp} quasi-free scattering limit and their comparison with first calculations based on Single Scattering Approximation (SSA) approach.Comment: 6 pages, 4 figures, presented at Jagiellonian Symposium 2015 in Krakow, PhD wor

    Startup of the High-Intensity Ultracold Neutron Source at the Paul Scherrer Institute

    Full text link
    Ultracold neutrons (UCN) can be stored in suitable bottles and observed for several hundreds of seconds. Therefore UCN can be used to study in detail the fundamental properties of the neutron. A new user facility providing ultracold neutrons for fundamental physics research has been constructed at the Paul Scherrer Institute, the PSI UCN source. Assembly of the facility finished in December 2010 with the first production of ultracold neutrons. Operation approval was received in June 2011. We give an overview of the source and the status at startup.Comment: Proceedings of the International Conference on Exotic Atoms and Related Topics - EXA2011 September 5-9, 2011 Austrian Academy of Sciences, Theatersaal, Sonnenfelsgasse 19, 1010 Wien, Austria 6 pages, 3 figure

    Determination of nuclear parton distributions

    Get PDF
    Parametrization of nuclear parton distributions is investigated in the leading order of alpha_s. The parton distributions are provided at Q^2=1 GeV^2 with a number of parameters, which are determined by a chi^2 analysis of the data on nuclear structure functions. Quadratic or cubic functional form is assumed for the initial distributions. Although valence quark distributions in the medium x region are relatively well determined, the small x distributions depend slightly on the assumed functional form. It is difficult to determine the antiquark distributions at medium x and gluon distributions. From the analysis, we propose parton distributions at Q^2=1 GeV^2 for nuclei from deuteron to heavy ones with the mass number A~208. They are provided either analytical expressions or computer subroutines for practical usage. Our studies should be important for understanding the physics mechanism of the nuclear modification and also for applications to heavy-ion reactions. This kind of nuclear parametrization should also affect existing parametrization studies in the nucleon because "nuclear" data are partially used for obtaining the optimum distributions in the "nucleon".Comment: 16 pages, REVTeX4b5, revtex4.cls, url.sty, natbib.sty, 10pt.rtx, aps.rtx, revsymb.sty, 21 eps figures. Submitted for publication. Computer codes for the nuclear parton distributions could be obtained from http://www-hs.phys.saga-u.ac.jp Email: [email protected]

    Comment on "Nucleon elastic form factors and local duality"

    Get PDF
    We comment on the papers "Nucleon elastic form factors and local duality" [Phys. Rev. {\bf D62}, 073008 (2000)] and "Experimental verification of quark-hadron duality" [Phys. Rev. Lett. {\bf 85}, 1186 (2000)]. Our main comment is that the reconstruction of the proton magnetic form factor, claimed to be obtained from the inelastic scaling curve thanks to parton-hadron local duality, is affected by an artifact.Comment: to appear in Phys. Rev.

    Description of inclusive scattering of 4.045 GeV electrons from D

    Get PDF
    We exploit a relationship between the Structure Functions of nucleons, the physical deuteron and of a deuteron, composed of point-nucleons to compute angular distributions of inclusive cross sections of 4.05 GeV electrons. We report general agreement with data and interpret the remaining discrepancies. We discuss the potential of the data for information on neutron structure functions Fkn(x,Q2)F_k^n(x,Q^2) and the static form factor GMn(Q2)G_M^n(Q^2).Comment: 9 pages,1 Fig., PS fil

    MC generators in CHORUS

    Get PDF
    This note presents an overview of general-purpose and specific Monte-Carlo event generators used in the simulation of the CERN - CHORUS experiment, aiming to search for νμ→ντ\nu_{\mu} \to \nu_{\tau} oscillations and charm particle decays in an emulsion target.Comment: 6 pages, LaTeX two-column format, 2 encapsulated postscript figures Proceedings of NuInt01 Workshop (KEK, Tsukuba, Japan, 13-16.12.2001

    All electromagnetic form factors

    Full text link
    The electromagnetic form factors of spin-1/2 particles are known, but due to historical reasons only half of them are found in many textbooks. Given the importance of the general result, its model independence, its connection to discrete symmetries and their violations we made an effort to derive and present the general result based only on the knowledge of Dirac equation. We discuss the phenomenology connected directly with the form factors, and spin precession in external fields including time reversal violating terms. We apply the formalism to spin-flip synchrotron radiation and suggest pedagogical projects.Comment: Latex, 22 page

    Evidence of the Coulomb force effects in the cross sections of the deuteron-proton breakup at 130 MeV

    Get PDF
    High precision cross-section data of the deuteron-proton breakup reaction at 130 MeV deuteron energy are compared with the theoretical predictions obtained with a coupled-channel extension of the CD Bonn potential with virtual Delta-isobar excitation, without and with inclusion of the long-range Coulomb force. The Coulomb effect is studied on the basis of the cross-section data set, extended in this work to about 1500 data points by including breakup geometries characterized by small polar angles of the two protons. The experimental data clearly prefer predictions obtained with the Coulomb interaction included. The strongest effects are observed in regions in which the relative energy of the two protons is the smallest.Comment: 9 pages, 3 figures, submitted to Physics Letters

    Nuclear medium modification of the F2 structure function

    Full text link
    We study the nuclear effects in the electromagnetic structure function F2(x,Q^2) in nuclei in the deep inelastic lepton nucleus scattering process by taking into account Fermi motion, binding, pion and rho meson cloud contributions. Calculations have been done in a local density approximation using relativistic nuclear spectral functions which include nucleon correlations for nuclear matter. The ratios over deuteron structure function are obtained and compared with the recent JLAB results for light nuclei with special attention to the slope of the x distributions. This magnitude shows a non trivial A dependence and it is insensitive to possible normalization uncertainties. The results have also been compared with some of the older experiments using intermediate mass nuclei.Comment: 19 pages, 8 figures. This version matches accepted version to be published in Nuclear Physics

    Nuclear Shadowing and Antishadowing in a Unitarized BFKL Equation

    Full text link
    The nuclear shadowing and antishadowing effects are explained by a unitarized BFKL equation. The Q2Q^2- and xx-variations of the nuclear parton distributions are detailed based on the level of the unintegrated gluon distribution. In particular, the asymptotical behavior of the unintegrated gluon distribution near the saturation limit in nuclear targets is studied. Our results in the nuclear targets are insensitive to the input distributions if the parameters are fixed by the data of a free proton.Comment: 19 pages, 6 figures, to be appeared in Chinese Physics
    • …
    corecore