162 research outputs found

    Rapid PCR assay for detecting common genetic variants arising in human pluripotent stem cell cultures

    Get PDF
    Human pluripotent stem cells (hPSCs) are prone to acquiring genetic changes upon prolonged culture. Particularly common are copy number changes, including gains of chromosomes 1q, 12p, 17q, and 20q, and/or loss of chromosomes 10p and 18q. The variant cells harboring common genetic changes display altered behaviors compared to their diploid counterparts, thus potentially impacting upon the validity of experimental results and safety of hPSC-derived cellular therapies. Hence, a critical quality attribute in hPSC maintenance should include frequent monitoring for genetic changes arising in cultures. This in turn places large demands on the genotyping assays for detection of genetic changes. Traditional methods for screening cells entail specialized cytogenetic analyses, but their high costs and a lengthy turnaround time make them impractical for high-throughput analyses and routine laboratory use. Here, we detail a protocol for a rapid, accessible, and affordable PCR-based method for detection of frequently occurring copy number changes in hPSCs

    Assessing cell competition in human pluripotent stem cell (hPSC) cultures

    Get PDF
    Cell-cell interactions are required for development and homeostasis in multicellular organisms from insects to mammals. A critical process governed by these interactions is cell competition, which functions throughout development to control tissue composition by eliminating cells that possess a lower fitness status than their neighbors. Human pluripotent stem cells (hPSCs) are a key biological tool in modeling human development and offer further potential as a source of clinically relevant cell populations for regenerative medicine applications. Recently, cell competition has been demonstrated in hPSC cultures and during induced pluripotent stem cell reprogramming. In turn, these findings suggest that hPSCs can be used as a tool to study and model cell-cell interactions during different stages of development and disease. Here, we provide a panel of protocols optimized for hPSCs to investigate the potential role that cell competition may have in determining the fate and composition of cell populations during culture. The protocols entail assessment of the competitive phenotype and the mode through which cell competition may lead to elimination of less-fit cells from mosaic cultures with fitter counterparts

    Human pluripotent stem cells as tools for high-throughput and high-content screening in drug discovery

    Get PDF
    A significant bottleneck in drug discovery is the lack of suitable models for sensitive, reliable, and rapid assessment of lead molecules in preclinical stages of drug discovery. Human pluripotent stem cells (hPSCs) derived either from early human blastocysts (human embryonic stem cells) or by reprogramming somatic cells to a pluripotent state (human-induced pluripotent stem cells) can be propagated extensively in vitro while retaining the ability to differentiate into any specialized cell type within the body. In this review, we discuss how these unique features of hPSCs could offer a way of producing relevant in vitro models amenable to high-throughput testing for drug discovery. We summarize recent progress in inducing differentiation of hPSCs to specific cell types, and describe the ongoing efforts in applying hPSCs and their differentiated derivatives in disease modeling, drug discovery, and developmental toxicology. Moreover, we review the applications of high-content imaging assays in detecting the changes in the phenotype of hPSCs and their differentiated progeny. Finally, we highlight challenges that need to be overcome in order for the application of hPSC technology to fully benefit drug discovery

    Acquired genetic changes in human pluripotent stem cells : origins and consequences

    Get PDF
    In the 20 years since human embryonic stem cells, and subsequently induced pluripotent stem cells, were first described, it has become apparent that during long-term culture these cells (collectively referred to as ‘pluripotent stem cells’ (PSCs)) can acquire genetic changes, which commonly include gains or losses of particular chromosomal regions, or mutations in certain cancer-associated genes, especially TP53. Such changes raise concerns for the safety of PSC-derived cellular therapies for regenerative medicine. Although acquired genetic changes may not be present in a cell line at the start of a research programme, the low sensitivity of current detection methods means that mutations may be difficult to detect if they arise but are present in only a small proportion of the cells. In this Review, we discuss the types of mutations acquired by human PSCs and the mechanisms that lead to their accumulation. Recent work suggests that the underlying mutation rate in PSCs is low, although they also seem to be particularly susceptible to genomic damage. This apparent contradiction can be reconciled by the observations that, in contrast to somatic cells, PSCs are programmed to die in response to genomic damage, which may reflect the requirements of early embryogenesis. Thus, the common genetic variants that are observed are probably rare events that give the cells with a selective growth advantage

    Single nucleotide polymorphism (SNP) arrays and their sensitivity for detection of genetic changes in human pluripotent stem cell cultures

    Get PDF
    Human pluripotent stem cells (hPSCs) can be grown in culture indefinitely, making them a valuable tool for use in basic biology, disease modeling, and regenerative medicine. However, over prolonged periods in culture, hPSCs tend to acquire genomic aberrations that confer growth advantages, similar to those seen in some cancers. Monitoring the genomic stability of cultured hPSCs is critical to ensuring their efficacy and safety as a therapeutic tool. Most commonly employed methods for monitoring of hPSC genomes are cytogenetic methods, such as G-banding. Nonetheless, such methods have limited resolution and sensitivity for detecting mosaicism. Single nucleotide polymorphism (SNP) array platforms are a potential alternative that could improve detection of abnormalities. Here, we outline protocols for SNP array whole-genome screening of hPSCs. Moreover, we detail the procedure for assessing the SNP array's sensitivity in detecting low-level mosaic copy-number changes. We show that mosaicism can be confidently identified in samples only once they contain 20% variants, although samples containing 10% variants typically display enough variation to warrant further investigation and confirmation, for example by using a more sensitive targeted method. Finally, we highlight the advantages and limitations of SNP arrays, including a cost comparison of SNP arrays versus other commonly employed methods for detection of genetic changes in hPSC cultures. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC

    Generation and trapping of a mesoderm biased state of human pluripotency

    Get PDF
    We postulate that exit from pluripotency involves intermediates that retain pluripotency while simultaneously exhibiting lineage-bias. Using a MIXL1 reporter, we explore mesoderm lineage-bias within the human pluripotent stem cell compartment. We identify a substate, which at the single cell level coexpresses pluripotent and mesodermal gene expression programmes. Functionally these cells initiate stem cell cultures and exhibit mesodermal bias in differentiation assays. By promoting mesodermal identity through manipulation of WNT signalling while preventing exit from pluripotency using lysophosphatidic acid, we ‘trap’ and maintain cells in a lineage-biased stem cell state through multiple passages. These cells correspond to a normal state on the differentiation trajectory, the plasticity of which is evidenced by their reacquisition of an unbiased state upon removal of differentiation cues. The use of ‘cross-antagonistic’ signalling to trap pluripotent stem cell intermediates with different lineage-bias may have general applicability in the efficient production of cells for regenerative medicine

    Retinoic acid accelerates the specification of enteric neural progenitors from in-vitro-derived neural crest

    Get PDF
    The enteric nervous system (ENS) is derived primarily from the vagal neural crest, a migratory multipotent cell population emerging from the dorsal neural tube between somites 1 and 7. Defects in the development and function of the ENS cause a range of enteric neuropathies, including Hirschsprung disease. Little is known about the signals that specify early ENS progenitors, limiting progress in the generation of enteric neurons from human pluripotent stem cells (hPSCs) to provide tools for disease modeling and regenerative medicine for enteric neuropathies. We describe the efficient and accelerated generation of ENS progenitors from hPSCs, revealing that retinoic acid is critical for the acquisition of vagal axial identity and early ENS progenitor specification. These ENS progenitors generate enteric neurons in vitro and, following in vivo transplantation, achieved long-term colonization of the ENS in adult mice. Thus, hPSC-derived ENS progenitors may provide the basis for cell therapy for defects in the ENS

    Time-Lapse Analysis of Human Embryonic Stem Cells Reveals Multiple Bottlenecks Restricting Colony Formation and Their Relief upon Culture Adaptation

    Get PDF
    Summary Using time-lapse imaging, we have identified a series of bottlenecks that restrict growth of early-passage human embryonic stem cells (hESCs) and that are relieved by karyotypically abnormal variants that are selected by prolonged culture. Only a minority of karyotypically normal cells divided after plating, and these were mainly cells in the later stages of cell cycle at the time of plating. Furthermore, the daughter cells showed a continued pattern of cell death after division, so that few formed long-term proliferating colonies. These colony-forming cells showed distinct patterns of cell movement. Increasing cell density enhanced cell movement facilitating cell:cell contact, which resulted in increased proportion of dividing cells and improved survival postplating of normal hESCs. In contrast, most of the karyotypically abnormal cells reentered the cell cycle on plating and gave rise to healthy progeny, without the need for cell:cell contacts and independent of their motility patterns

    Identification and single-cell functional characterization of an endodermally biased pluripotent substate in human embryonic stem cells

    Get PDF
    Human embryonic stem cells (hESCs) display substantial heterogeneity in gene expression, implying the existence of discrete substates within the stem cell compartment. To determine whether these substates impact fate decisions of hESCs we used a GFP reporter line to investigate the properties of fractions of putative undifferentiated cells defined by their differential expression of the endoderm transcription factor, GATA6, together with the hESC surface marker, SSEA3. By single-cell cloning, we confirmed that substates characterized by expression of GATA6 and SSEA3 include pluripotent stem cells capable of long-term self-renewal. When clonal stem cell colonies were formed from GATA6-positive and GATA6-negative cells, more of those derived from GATA6-positive cells contained spontaneously differentiated endoderm cells than similar colonies derived from the GATA6-negative cells. We characterized these discrete cellular states using single-cell transcriptomic analysis, identifying a potential role for SOX17 in the establishment of the endoderm-biased stem cell state
    • 

    corecore