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Significance Statement 

With the increasing use of human pluripotent stem cells (hPSCs) in applications ranging from 

basic biology to cell replacement therapies, the question of genome integrity of hPSCs has been 

garnering particular attention. Since hPSCs were first established two decades ago, recurring 

changes in their genomes have become well documented and recognized as functionally 

relevant to the behaviour of variant cells in vitro. Regular monitoring of hPSC cultures is 

pivotal for early detection of variants, but the frequency of screening is hampered by the need 

for specialist expertise and high costs of currently employed methods. The PCR-based method 

detailed here provides an effective and rapid tool for routine and high-throughput detection of 

the most frequently occurring copy number changes in hPSCs. 

 

 
ABSTRACT 
Human pluripotent stem cells (hPSCs) are prone to acquiring genetic changes upon prolonged 

culture. Particularly common are copy number changes, including gains of chromosomes 1q, 

12p, 17q and 20q, and/or loss of chromosomes 10p and 18q. The variant cells harbouring 

common genetic changes display altered behaviours compared to their diploid counterparts, 

thus potentially impacting upon the validity of experimental results and safety of hPSC-derived 

cellular therapies. Hence, a critical quality attribute in hPSC maintenance should include 
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frequent monitoring for genetic changes arising in cultures. This in turn places large demands 

on the genotyping assays for detection of genetic changes. Traditional methods for screening 

cells entail specialized cytogenetic analyses, but their high costs and a lengthy turnaround time 

make them impractical for high-throughput analyses and routine laboratory use. Here, we detail 

a protocol for a rapid, accessible and affordable PCR-based method for detection of frequently 

occurring copy number changes in hPSCs. 

 
Keywords: Human Pluripotent Stem Cells (hPSCs), Genetic Changes, Copy Number Variant 
(CNV), Quantitative Polymerase Chain Reaction (qPCR).  
 
 
INTRODUCTION 
 
Due to their ability to expand extensively in culture and to produce differentiated tissue-

specific cell types, human pluripotent stem cells (hPSCs) have become a key tool in disease 

modelling, drug discovery and regenerative medicine (Takahashi et al., 2007; Thomson et al., 

1998). HPSCs can be propagated in a diploid state for long periods of time, but like any other 

living cells, hPSCs are also subject to genetic alteration that may impact on their phenotype 

and/or behaviour (Baker et al., 2007; Draper et al., 2004; International Stem Cell Initiative, 

2011). The collated data of genetic anomalies in hPSCs demonstrates a spectrum of 

abnormalities from numerical and structural aneuploidies down to recently detected point 

mutations in TP53 (Merkle et al., 2017). Genomic imbalances detected in hPSCs exhibit a 

strong bias towards gains of chromosomal regions, with the most commonly recurring genetic 

changes encompassing gains of chromosome 1q, 12p, 17q, 20q, and losses of chromosomes 

10p and 18q (Baker et al., 2016; Draper et al., 2004; International Stem Cell Initiative, 2011). 

The non-random nature of these aneuploidies is suggestive of their ability to endow the variant 

cells with a growth advantage over the wild type cells (Draper et al., 2004). Although the 

functional consequences of common genetic variants remain poorly characterised, some of the 

recurrent genetic changes in hPSCs were shown to affect hPSC differentiation (Gertow et al., 

2007; Werbowetski-Ogilvie et al., 2009; Fazeli et al., 2011; Ben-David et al., 2014; Varela et 

al., 2012), reduce the tendency of hPSCs to undergo apoptosis (Avery et al., 2013; Barbaric et 

al., 2014; Enver et al., 2005) and increase tumorigenicity of undifferentiated hPSCs in vivo 

(Ben-David et al., 2014). As a corollary of such profound effects of genetic changes on stem 
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cell behaviour, the presence of variant cells in hPSC cultures could skew experimental results 

in vitro and potentially hinder progression of stem cell-based therapies into clinic. 

 

To mitigate the risk of variant cells, hPSC cultures should be regularly monitored for their 

occurrence. Different cytogenetic and molecular methods are available for mutation detection, 

but given the diversity of the genetic changes arising in hPSC genomes, no single method has 

the scope to accurately and sensitively detect all types of genetic changes in a single assay. For 

example, gross cytogenetic changes are easily identifiable from the analysis of metaphases by 

karyotyping, but small amplifications are often overlooked due to the limited resolution of this 

method (Simons et al.,  2013). In the context of hPSCs genotyping, chromosome 20q copy 

number variant (CNV) is a particularly frequent, recurrent change that necessitates the use of 

an alternative or additional technique to karyotyping (International Stem Cell et al., 2011). 

Examples of methods suitable for CNV detection include Fluorescent In Situ Hybridization 

(FISH), comparative genomic hybridization (CGH) and single nucleotide polymorphism 

(SNP) array platforms. Despite the availability of multiple technologies for genotyping, these 

approaches can become problematic for routine monitoring of hPSCs as the currently employed 

cytogenetic and molecular methods are not easily scaled up to accommodate the high-

throughput, quick turn-over needs of laboratories that handle many different cultures at any 

given time. This is especially pertinent to laboratories producing large numbers of hPSC lines 

or clones, for example when reprogramming somatic cells to hPSCs or producing genetically 

modified cells using CRISPR/Cas9 technology. 

 

Given that over 50% of all common genomic anomalies in hPSCs involve copy number 

changes of chromosomes 1q, 12p, 17q, 20q and 18q, we reasoned that screening for those 

particular genetic changes would allow for a low cost, first-pass screen of hPSC cultures. To 

this end we have previously designed a targeted panel of primers on commonly amplified 

regions for a use in a quantitative PCR (qPCR)-based screen (Baker et al., 2016). Our assay is 

based on relative quantification, whereby the amount of a target locus is first compared to a 

reference locus within the same sample. For a reference locus we chose a gene on chromosome 

4 (RELL1), as copy number changes of chromosome 4 are very rare in hPSCs (Baker et al., 

2016; International Stem Cell et al., 2011). The difference in the amount of the target and 

reference loci are then compared to the difference between the same set of loci in a calibrator 

sample with a known diploid karyotype.  
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The whole method as described in this unit entails identification of a calibrator sample (Basic 

Protocol 1), genomic DNA extraction from hPSCs (Basic Protocol 2), DNA digestion (Basic 

Protocol 3), running the qPCR (Basic Protocol 4) and data analysis (Basic Protocol 5). Once 

the calibrator DNA is established it can be used in any subsequent testing, but it should always 

be included in an assay alongside the test samples. With the calibrator DNA in place, the rest 

of the assay can be completed within one day. The speed of the protocol, the need for only 

basic laboratory equipment and a cost of less than £10 per sample, makes this qPCR-based 

method particularly suitable for rapid first-pass screening of hPSC lines in routine laboratory 

practice. Comparable to FISH, qPCR detects variant cells when they are present at 10% or 

more of all cells in a population (Baker et al., 2016). 

 
 
BASIC PROTOCOL 1 

Establishing calibrator DNA reference 

The calibrator DNA reference is a sample with diploid copy numbers for target loci, as 

determined by methods independent of qPCR. Although the calibrator DNA could be extracted 

from any diploid human cell type, we use hPSCs as a source of our calibrator DNA. Prior to 

using a DNA sample as a calibrator reference in the qPCR assay, it is important to confirm the 

diploid status of the cells by karyotyping and Fluorescent In Situ Hybridization (FISH) for 

chromosome 20q. FISH for 20q must be performed alongside karyotyping, as the 20q CNV 

often appears below the resolution of karyotyping.  

 
Materials 

Established, growing hPSC culture 

 

1. Choose an early-passage hPSC line that may serve as a calibrator sample. Culture a 

flask of hPSCs under appropriate culture conditions until the cells are ready for passage. 

2. Passage a single culture of growing hPSCs into three parallel cultures (See Support 

Protocol 1). 

3. Two to three days after passaging, process the three parallel cultures as follows: 
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i) Harvest the cells from one of the cultures for karyotyping (See Support Protocol 

2). 

ii)  Harvest the cells from the second parallel culture for detection of chromosome 

20q copy number variant by FISH (See Support Protocol 3). 

iii)  Harvest the cells from the third culture for genomic DNA extraction (see Basic 

Protocols 2 and 3).  

 

Note: the same procedure can be used to validate the presence of a copy number change in 

cells. If trisomy encompasses the minimal regions targeted by our panel of primers on 

chromosomes 1q, 12p, 17q, 20q or if monosomy of 18q is detected, the DNA of variant cells 

can be used as a positive control in the qPCR assay. 

 
SUPPORT PROTOCOL 1 

Passaging hPSCs 

The following procedure should be carried out in a laminar flow hood under sterile conditions. 

Materials 

Vitronectin (Cat. No. A14700, Life Technologies) 

Dulbecco’s Phosphate Buffered Saline (PBS), without calcium chloride and magnesium 

chloride 

hPSC culture 

Essential 8 (Cat no. A1517001, Life Technologies) 

ReLeSR (Cat no. 05873, StemCell Technologies) 

 

T12.5 cell culture flasks 

 
1. Prepare three T12.5 flasks by coating them with vitronectin (diluted 1:100 in PBS), for 

at least an hour at room temperature. After an hour, remove vitronectin and add 1.5mL 

pre-warmed Essential 8 culture medium per flask. 
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2. Remove the medium from the hPSCs growing in a T12.5 flask on vitronectin in 

Essential 8 and wash once with PBS. 

3. Add 1mL ReLeSR into the flask and swirl the flask to ensure that ReLeSR covers all 

of the cells on the bottom of the flask. Aspirate ReLeSR within one minute. Aspirating 

the liquid will leave behind only a thin layer of ReLeSR coating the cells. Leave the 

flask at room temperature for 4min. 

4. Tap the side of the flask with one hand to facilitate detachment of colonies/ clumps of 

cells. Add 1.5mL Essential 8 culture medium onto cells and pipette gently once or twice 

to ensure that all the cells detach from the flask. Distribute the cells into the three T12.5 

flasks with Essential 8 by pipetting 0.5mL of cells per flask. 

Note: a longer incubation with ReLeSR and/or repeated pipetting after the addition of 

the medium will result in smaller clumps and dissociation to increased numbers of 

single cells, which in turn may negatively impact on the survival of cells post-

passaging. The conditions suggested here are provided as a general guideline, but 

ideally should be optimised for each hPSC line and each operator. 

5. Culture the cells at 37C in 5% CO2 with daily replenishing of the culture medium. 

 
 
SUPPORT PROTOCOL 2 

Processing of hPSCs for karyotyping 

 
Materials 

KaryoMAX Colcemid Solution in PBS (Cat. no. 15212012, ThermoFisher Scientific) 

Dulbecco’s Phosphate Buffered Saline (PBS), without calcium chloride and magnesium 

chloride 

TrypLE Express Enzyme (Cat.no. 11528856, Fisher Scientific) 

DMEM/F12 (D6421-500ML, Sigma-Aldrich) 

0.0375M KCl, prewarmed to 37C 
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Fixative (3 parts methanol : 1 part acetic acid, v/v) 

 

15ml tubes 

Laboratory centrifuge 

 
 

1. Add 0.1µg/ml KaryoMAX Colcemid solution in culture medium to the flask of hPSCs 

and incubate at 37C, 5% CO2 for 2-4 hours. 

2. Remove the medium with colcemid and wash once with PBS. 

3. Add 1mL of TrypLE Express Enzyme per flask and incubate at 37C for 3 minutes. 

4. Add 4mL basal medium (DMEM/F12) and transfer to a 15mL tube, making sure all of 

the cells have been collected from the flask. 

5. Centrifuge the cells at 270 g for 8 mins at room temperature. 

6. Remove the supernatant, taking care not to disturb the cell pellet. 

7. Re-suspend the pellet in pre-warmed 0.0375M KCl hypotonic solution and incubate for 

10 min at room temperature.  

6. Pellet the cells by centrifuging them at 270 g for 8 mins at room temperature. 

7. Add 2mL fixative (3 parts methanol : 1 part acetic acid, v/v) onto the cells, in a drop-

wise manner. 

It is important that the fixative is added slowly, in a drop-wise manner, whilst 

continuously agitating the tube with cells. If fixative is added too quickly, it may lyse 

the cells.  

Pause point: The fixed cells can now be stored at 4C prior to sending off to a 

cytogenetics laboratory for preparation of metaphase spreads and karyotyping. 

 
 
SUPPORT PROTOCOL 3 
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Processing of hPSCs for FISH analysis 

Materials 

Dulbecco’s Phosphate Buffered Saline (PBS), without calcium chloride and magnesium 

chloride 

TrypLE Express Enzyme (Cat.no. 11528856, Fisher Scientific) 

DMEM/F12 (D6421-500ML, Sigma-Aldrich) 

0.0375M KCl, prewarmed to 37C 

Fixative (3 parts methanol : 1 part acetic acid, v/v) 

 

15ml tubes 

Laboratory centrifuge 

 
 

1. Remove the medium from the flask of hPSCs and wash once with 3mL PBS. 

2. Remove PBS and add 1mL of TrypLE Express Enzyme onto cells. Incubate at 37C 

for 3 mins. 

3. Add 4mL basal medium (DMEM/F12) and transfer to a 15mL tube, making sure all of 

the cells have been collected from the flask. 

4. Centrifuge the cells at 270 g for 8 mins at room temperature. 

5. Remove the supernatant, taking care not to disturb the cell pellet. 

6. Add 1mL of 0.0375M potassium chloride pre-warmed to 37C. 

7. Centrifuge the cells at 270 g for 8 mins at room temperature. 

8. Remove the supernatant, taking care not to disturb the cell pellet. 

9. Add 2mL fixative (3 parts methanol : 1 part acetic acid, v/v) onto the cells, in a drop-

wise manner. 

It is important that the fixative is added slowly, in a drop-wise manner, whilst 

continuously agitating the tube with cells. If fixative is added too quickly, it may lyse 

the cells.  
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Pause point: The fixed cells can now be stored at 4C prior to sending off to a 

cytogenetics laboratory for FISH analysis. 

 
 
BASIC PROTOCOL 2  

Genomic DNA extraction 

An essential requirement for qPCR-based detection of copy number variants is the extraction 

of good quality genomic DNA from hPSC cultures. We commonly use QIAGEN DNeasy 

Blood & Tissue Kit, although alternative commercial kits for DNA extraction are also 

available. 

 

Materials 
hPSC cultures or hPSC pellets stored at -20C 

DMEM/F12 (D6421-500ML, Sigma-Aldrich) 

Dulbecco’s Phosphate Buffered Saline (PBS), without calcium chloride and magnesium 

chloride 

Qiagen DNeasy Blood & Tissue Kit (Cat. no. 69506, Qiagen) 

Ethanol, Absolute 

 

Rubber policeman or equivalent tools for scraping off the cells 

15ml tubes 

Laboratory centrifuge 

Pipettes covering a range of 1-1000µl  

Nuclease-free tips 

Microcentrifuge capable of ≥20,000g 

Microcentrifuge tubes 1.5ml 

Vortex mixer  
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NanoDrop (Thermo Fisher) or similar spectrophotometer 

DNA Extraction 

1. Remove the culture medium from the flask containing hPSCs and replace it with 

3mL basal medium, such as DMEM/F12.  

2. Scrape the cells off the bottom of the flask using a rubber policeman.  

3. Transfer the cells into a 15ml tube and pellet them by centrifuging at 160 g for 3 

min.  

4. Carefully remove the supernatant without disturbing the cell pellet.  

 

Alternatively, cells can be harvested by enzymatic methods, such as trypsin, TrypLE 

or accutase, and counted prior to pelleting. This may be useful if the cultures are 

particularly confluent and yielding numbers of cells higher than >2.5x106. 

According to the manufacturer’s instructions of the QIAGEN DNeasy Blood and 

Tissue DNA extraction kit, the columns can take up to 5x106 cells, but in our 

experience, pellets of more than 2.5x106 cells can overload the column, resulting in 

inefficient washing steps and ultimately a lower purity of extracted DNA. 

 

Pause point: Cell pellets can be placed at -20°C and the DNA extraction continued 

at a later date. Upon removal of the pellets from the freezer, allow the pellets to 

thaw at room temperature for up to five minutes. Dislodge the pellets by firmly 

tapping on the outside of the tube. 

 

5. Resuspend the cell pellet in 200µl PBS and follow the QIAGEN DNeasy Blood and 

Tissue Quick protocol according to the manufacturer’s instructions, with the 

following amendments: 
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Pipette 40µl of Buffer AE per every 500,000 cells harvested, onto the centre of the 

purification column. Incubate the column with the Buffer AE at room temperature 

for 10 minutes prior to spinning it for 1 minute at ≥6000 g to elute the DNA. 

DNA Quantification 

1. Vortex the eluted DNA samples briefly before determining the quantity and quality of 

the extracted DNA by spectrophotometry.  

Note that the DNA samples with an A260/280 ratio <1.80 are not considered 

sufficiently pure and therefore should be either further purified or discarded. 

DNA Storage 

1. Store the DNA samples at 4°C for up to 2 months or at -20°C for up to 2 years. 

 
 
BASIC PROTOCOL 3 

DNA Digestion  

Digesting extracted genomic DNA using a restriction enzyme improves PCR efficiency and 

robustness. Our protocol uses EcoRI as we confirmed that none of the amplicons in our qPCR 

panel contain an EcoRI site. DNA (1µg) digestion is performed in a 50µl reaction, followed by 

a 1:1 dilution in nuclease-free water. The resulting 10ng/µl solution of digested DNA is then 

ready for use in the qPCR assay. We perform restriction digests in a thermal cycler, but 

conventional heat blocks or water baths can be employed to the same effect. 

Materials 

DNA (≥200ng/µl) 

Nuclease-free water 

10X FastDigest Buffer (Cat. no. B64, ThermoScientific) 



 

 12 

FastDigest EcoRI (Cat. no. FD0275, ThermoScientific) 

 

8-strip PCR tubes with lids 

Pipettes covering a range of 1-1000µl  

Nuclease-free tips 

Thermal cycler or a heat block 

 

1. Label the PCR tubes appropriately and add 1µg of sample DNA. 

If the Qiagen DNeasy Blood & Tissue Kit was used for DNA extraction, the DNA 

concentration should be ≥200 ng/µl, because AE elution buffer should not make up 

more than 20% of the total reaction volume. 

2. Add nuclease-free water up to 44µl. 

3. Add 5µl 10X FastDigest Buffer to each reaction. 

4. Add 1µl of FastDigest EcoRI to each reaction and seal lids. 

The use of FastDigest EcoRI speeds up the process of restriction digest. However, 

conventional EcoRI with a longer incubation time can also be used to digest the DNA. 

5. Run reactions in a thermal cycler using the following conditions: 

37°C, 30mins 

80°C, 5mins 

6. Add 50µl nuclease-free water to each completed reaction to yield a 10ng/µl solution of 

digested DNA. 

 

BASIC PROTOCOL 4 
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qPCR setup  

The first step in the qPCR set up is determining the number of reactions to be included on a 

384-well plate. In addition to test DNA samples, a calibrator sample, a positive DNA control 

(if available) and a no-template control for each of the target/reference loci should be included. 

Each sample – locus combination should be tested in triplicate wells. To reduce the amount of 

pipetting and improve accuracy, PCR reagents are combined into master mixes. As different 

primer pairs are used for testing different loci, separate master mixes must be made for each of 

the five target loci (1q, 12p, 20q, 17q and 18q) and for the internal reference locus (4p) (Table 

1). The master mixes should be aliquoted into the appropriate wells of the 384-well plate before 

adding the DNA, to prevent cross-contamination of samples. The use of multi-dispense pipettes 

speeds up the process of aliquoting the master mixes and DNA samples, and reduces pipetting 

errors.  

Materials 

Nuclease-free water  

TaqMan® Fast Universal PCR Mix (2X) (Cat.no. 4366072, ThermoFisher Scientific) 

10µM forward and reverse primer solutions (sequences detailed in Table 1) 

Roche Life Sciences UPL Probes #12, #13, #25, #44, #60 (Roche) 

EcoRI-digested DNA at a concentration of 10ng/µl 

 

Pipettes covering a range of 1-1000µl  

Nuclease-free tips 

1.5ml microcentrifuge tubes 

Vortex mixer 

Multi-dispense electronic pipettes covering a range of 2-100µl 

384 well standard PCR plate 



 

 14 

Adhesive PCR plate seal 

Centrifuge with plate carriages 

qPCR thermal cycler (e.g. QuantStudio 12K Flex Real-Time PCR System (Applied 

Biosystems, Life Technologies)) 

 

The following procedure should be carried out on ice, with all solutions kept on ice, in 

order to minimise evaporation from wells and to minimise Taq polymerase activity 

prior to placing the reaction in the thermal cycler. 

 

1. Determine the number of reactions to be included on a 384 well plate. The DNA 

samples should include the test samples, a calibrator DNA sample and no template 

control for each of the master mixes. If available, also include positive control samples 

with known trisomies or monosomies of target loci. Each reaction should be run in 

triplicate. An example of a 384 well plate layout has been provided in Figure 1. 

 

2. Prepare qPCR master mixes for each locus as indicated in Table 2. Components of the 

master mix should be added in the sequence listed. Crucially, the light sensitive 

hydrolysis probe should be added last to minimise the light exposure. Mix each 

component thoroughly by vortexing prior to use. A surplus of three or more reactions 

per master mix should be made to allow for loss of solutions to plastic ware and 

pipetting error. 

3. Mix each of the master mixes thoroughly by vortexing and aliquot 8µl per well of a 384 

well plate according to the plate map from step 1.  

We use a multi-dispense pipette to speed up the aliquoting process, with a new pipette 

tip used for each of the master mixes.  
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4. Vortex the DNA samples and using a multi-dispense pipette, add 2µl of 10ng/µl EcoRI-

digested DNA per well.  

Use one pipette tip per three replicate wells, and then discard the tip and use a new one 

prior to pipetting the DNA into next set of three wells containing a different master mix. 

This is necessary to prevent possible cross-contamination of master mixes.  

5. Seal the plate using the adhesive plate sealing film.  

Special attention should be taken to ensure that every well and the edges of the plate 

are completely sealed. Any gaps between sealing film and well will lead to evaporation 

of the reaction mixture, thereby altering concentrations of reagents and affecting the 

results. 

6. Briefly spin the plate to ensure the reaction mixtures have collected in the bottom of 

the wells.  

7. Load the plate into the qPCR Thermal cycler and run the following profile: 

Hold Stage: 50°C 2 minutes 

Denaturation: 95°C 10 minutes 

40 Cycles at 95°C 15seconds, 60°C 1 minute 

All ramp stages are at 1.6°C/s.  

 

BASIC PROTOCOL 5 

Data analysis 

 
Glossary 

Calibrator  - a sample with diploid copy numbers for target loci, as determined by 

methods independent of qPCR. 
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Internal reference locus – a locus within the genomic DNA which is expected to have 

a stable copy number. It is measured alongside the target locus in a sample and used to 

normalise the target locus copy numbers. For a reference locus we chose a gene on 

chromosome 4 (RELL1), as copy number changes of chromosome 4 are very rare in 

hPSCs. 

Target locus – locus or gene of interest. In our assay we are determining the copy 

numbers of loci 1q, 12p, 17q, 18q and 20q, as these are the most commonly observed 

copy number changes in hPSCs. 

Cq (cycle quantification) - the number of cycles in a qPCR run at which fluorescence 

from PCR amplification exceeds the background fluorescence (Bustin et al., 2009). 

Relative quantification of copy numbers – a quantification approach used to 

determine the copy numbers of a target locus based on a comparison to a calibrator 

sample (Livak & Schmittgen, 2001). 

 

1. When the qPCR run is completed, obtain the quantification cycle (Cq) values for each 

of your replicate reactions using the auto-baseline settings of the QuantStudio 12K Flex 

Software (or equivalent if using an alternative qPCR machine) and export them into an 

Excel file for further processing. 

 

Note: Cq values are defined as the number of cycles at which fluorescence from PCR 

amplification exceeds the background fluorescence. Although the QuantStudio 12K 

Flex Software reports Ct (threshold cycle) values, MIQE guidelines proposed the 

standardisation of nomenclature in the interest of better experimental practice in the 

use of qPCR (Bustin et al., 2009). Hence, from herein we will use the term Cq values 

instead of the Ct values. 
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Example of raw data cq values from a qPCR run: 

Sample Name 
Target 
Name Cq 

Calibrator 4P 24.365 
Calibrator 4P 24.358 
Calibrator 4P 24.327 
Sample 1 4P 23.979 
Sample 1 4P 23.977 
Sample 1 4P 24.172 
Calibrator 1Q 24.435 
Calibrator 1Q 24.383 
Calibrator 1Q 24.341 
Sample 1 1Q 23.357 
Sample 1 1Q 23.559 
Sample 1 1Q 23.506 

 

Note: As a quality control step, check that the Cq values of your technical replicates do 

not differ by more than 0.3. A large variation in Cq values may be a result of inaccurate 

pipetting and warrants a repeat of the experiment. 

2. For each DNA sample, calculate the Cq average for the reference locus in your sample 

by averaging values of the three technical replicates: 

Cq average(4p reference locus of the sample) = Sum [Cq of the technical replicates for the 4p reference 

locus of the sample] / number of technical replicates 

 

Cq average(4p reference locus of the sample) = (23.979+ 23.977 + 24.172)/3 = 24.04 

 

 

3. Calculate dCq of a test locus within a DNA sample by subtracting the calculated 

average Cq value of the internal reference locus (4p) from the Cq values from each 

replicate well (n) of the target locus, as follows: 

 

Technical replicates: calibrator 
sample, reference locus 

Technical replicates: unknown 
sample, reference locus 

Technical replicates: calibrator 
sample, target locus 

Technical replicates: unknown 
sample, target locus 
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dCq(target locus of the sample, replicate n) = Cq(target locus of the sample, replicate n)- Cq average(4p reference locus of the sample) 

 

dCq(target locus of the sample, replicate 1) = 23.357 - 24.04 = -0.683 

dCq(target locus of the sample, replicate 2) = 23.559 - 24.04 = -0.481 

dCq(target locus of the sample, replicate 3) = 23.506 - 24.04 = -0.534 

 

 

4. Calculate the Cq average for the reference locus in your calibrator by averaging 

values of the three technical replicates: 

 

Cq average(4p reference locus of the calibrator) = Sum [Cq of the technical replicates for the 4p reference 

locus of the calibrator] / number of technical replicates: 

 

 

 

Cq average(4p reference locus of the calibrator) = (24.365 + 24.358 + 24.327)/3 = 24.35 
 

5. Calculate dCq of the target locus within the calibrator by subtracting the average 

Cq value of the internal reference locus (4p) from the Cq values from each replicate 

well of the target locus for the calibrator sample: 

 

dCq(target locus of the calibrator, replicate n) = Cq(target locus of the calibrator, replicate n)- Cq average(4p reference locus of the 

calibrator) 

 

dCq(target locus of the calibrator, replicate 1) = 24.435-24.35 = 0.085 

dCq(target locus of the calibrator, replicate 2) = 24.383-24.35 = 0.033 

dCq(target locus of the calibrator, replicate 3) = 24.341-24.35 = -0.009 
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6. Calculate the dCq average for the target locus in your calibrator by averaging values 

of the three technical replicates: 

 

dCq average(target locus of the calibrator) = Sum [dCq of the technical replicates for the target locus of 

the calibrator] / number of technical replicates 

 

dCq average(target locus of the calibrator) = (0.085 + 0.033 - 0.009)/3 = 0.109 

 

 

7. Determine the ddCq value for each replicate by subtracting the average dCq of the 

calibrator sample for a given locus from the dCq of the same locus in the test 

sample: 

 

ddCq(target locus of the sample, replicate n) = dCq(target locus of the sample, replicate n)- dCq average(calibrator target locus) 

 

ddCq(target locus of the sample, replicate 1) = -0.683 - 0.109 = -0.792 

ddCq(target locus of the sample, replicate 2) = -0.481 - 0.109 = -0.59 

ddCq(target locus of the sample, replicate 3) = -0.534 - 0.109 = -0.643 

 

8. Calculate the relative quantity of the test locus in the sample by raising 2 to the 

power of –ddCq: 

Relative quantity(target locus of the sample, replicate n)= 2-ddCq (target locus of the sample, replicate n) 

 

Relative quantity(target locus of the sample, replicate 1)= 2-(-0.792) = 1.73 

Relative quantity(target locus of the sample, replicate 2)= 2-(-0.59) = 1.51 

Relative quantity(target locus of the sample, replicate 3)= 2-(-0.643) = 1.56 
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9. Determine the copy number of the test locus within the sample of interest by 

multiplying the relative quantity value by 2: 

 

Copy number(target locus of the sample, replicate n)= 2*Relative quantity(target locus of the sample, replicate n) 

 

Copy number(target locus of the sample, replicate 1)= 2*1.73 = 3.46 

Copy number(target locus of the sample, replicate 2)= 2*1.51 = 3.02 

Copy number(target locus of the sample, replicate 3)= 2*1.56 = 3.12 

 

10. Finally, calculate the average of the technical replicates (n) for each target locus 

within a sample: 

Average copy number(target locus of the sample) = Sum [Copy number(target locus of the sample, replicate n)] / 

number of technical replicates 

 

Average copy number(target locus of the sample) = (3.46 + 3.02 + 3.12) / 3 = 3.2 

 

11. To determine the cut-off points for classifying samples as containing a variant 

population, calculate the standard deviation of the copy numbers obtained for each 

of the target loci within the calibrator. Multiply the standard deviation by a factor 

of three. In our experience, this calculation usually yields a number of around 0.2. 

Thus, samples with copy numbers higher than ~2.2 or less than ~1.8 can be classed 

as containing a mosaic variant population with a trisomy or monosomy of a locus, 

respectively (Figure 2). 
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SUPPORT PROTOCOL 4 
 
The use of the qPCR assay in determining the size of the amplified region 
 
Primer sets designed to span the length of a chromosome make it possible to adapt the qPCR 

assay to measure the length of an amplicon. Support Protocol 4 details how the assay can be 

adapted to measure the amplicon length on chromosome 20q.  

 
1. The primers (Table 3) were designed to target genes spanning the length of the q arm of 

chromosome 20 (Figure 3A). Each primer set is separated by approximately 100-200 kb. 

2. The PCR assay should be performed as described in Basic Protocol 4, but substituting the 

primers used in Table 1 with those listed in Table 3. Remember to include the calibrator 

sample and, if available, the positive control sample. 

3. Data analysis should be performed using the protocol listed in Basic Protocol 5. Copy 

number values above or below three times the standard deviation are classified as containing a 

mosaic population. The approximate amplicon length can be determined based on the positive 

values (Figure 3B).  

 

 

SUPPORT PROTOCOL 5 
 
Primer Design and Testing 

One of the major advantages of the qPCR-based method for detection of genetic changes is its 

flexibility, meaning that the range of loci tested can be easily expanded by incorporating new 

primer pairs into the test panel to screen for the copy number of any gene or sequence in the 

genome. The process requires preliminary in silico screening of primer pairs to predict 

specificity and lack of self-complementarity in primers. This is followed by in vitro screening 

of candidate primer pairs initially for specificity via melting curve analysis to ensure primers 

amplify only one product. Finally, amplification efficiencies of primers are determined by 

generating standard curves. 
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Materials 

Nuclease-free water  

SYBR® Green JumpStart™ Taq ReadyMix™ (Cat.no. S4438, Sigma-Aldrich) 

10µM forward and reverse primer solutions  

EcoRI-digested DNA at a concentration of 10ng/µl 

EcoRI-digested DNA at a concentration of 50ng/µl 

TaqMan® Fast Universal PCR Mix (2X) (Cat.no. 4366072, ThermoFisher Scientific) 

Roche Life Sciences UPL Probes (Roche) 

 

Pipettes covering a range of 1-1000µl  

Nuclease-free tips 

1.5ml microcentrifuge tubes 

Vortex mixer 

Multi-dispense electronic pipettes covering a range of 2 -100µl 

384 well standard PCR plate 

Adhesive PCR plate seal 

Centrifuge with plate carriages 

qPCR thermal cycler (e.g. QuantStudio 12K Flex Real-Time PCR System (Applied 

Biosystems, Life Technologies)) 

 
 
Primer Design 

1. Retrieve a genomic sequence of a gene/locus of interest by using a human genome 

browser, such as the Ensembl (https://www.ensembl.org/Homo_sapiens/Info/Index). 

2. Copy an intronic region of sequence from within the gene and paste the sequence into 

Roche Life Sciences Assay Design Centre  

https://www.ensembl.org/Homo_sapiens/Info/Index
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(https://www.lifescience.roche.com/en_gb/brands/universal-probe-library.html#assay-

design-center). 

3. Uncheck the “Automatically select an intron spanning assay” box and click “Design 

primers” to obtain a panel of candidate primers and corresponding hydrolysis probes. 

4. Screen amplicons of the top four candidate primer pairs for the absence of an EcoRI 

restriction site: GAATTC. Proceed only with the primer pairs whose expected PCR 

amplicons do not harbour the EcoRI restriction site. 

5. To check the specificity of the primers, copy candidate primer sequences into the NCBI 

Primer-Blast database (https://www.ncbi.nlm.nih.gov/tools/primer-blast/) to screen for 

self-complementarity and specificity. Prior to screening the primers, adjust Primer Pair 

Specificity Checking Parameters to the genomes for selected organisms option. 

6. Choose a primer pair determined to be specific by the above in silico method and 

generate 10µM working stocks as detailed in the reagents and solutions section.  

Given the low cost of primers, to speed up the testing we typically purchase at least 

three different primer pairs perlocus of interest. 

 

Melting Curve Analysis 

Melting curve analysis is used to verify the specificity of the PCR reaction by confirming the 

presence of a single PCR product, and absence of non-specific products and/or primer dimers. 

It is based upon the property of the DNA double helix to denature with an increase in 

temperature, with the temperature at which denaturing occurs affected by the PCR amplicon 

sequence and length. Melting curve analyses employ fluorescent dyes, such as SYBR Green I 

dye, which bind non-specifically to DNA duplex but not to single stranded DNA. Thus, during 

melting curve analysis the fluorescence of a completed PCR reaction is continually monitored 

over a gradual rise in temperature. A sharp drop in fluorescence indicates the melting 

temperature (Tm) of the product. The thermal cycler software typically produces melting curves 

as part of the menu options and plots melting peaks. Specific primers will amplify only one 

product, corresponding to a solitary peak in the resulting graph, whereas the presence of non-

specific amplicons and primer dimers is evident as multiple peaks. 

 
 

The following procedure should be carried out on ice, with all solutions kept on ice, in 

order to minimise evaporation from wells and to minimise Taq polymerase activity 

prior to placing the reaction in the thermal cycler. 

https://www.lifescience.roche.com/en_gb/brands/universal-probe-library.html#assay-design-center
https://www.lifescience.roche.com/en_gb/brands/universal-probe-library.html#assay-design-center
https://www.ncbi.nlm.nih.gov/tools/primer-blast/


 

 24 

 

1. Determine the number of reactions to be included on a 384-well plate. Each primer pair 

should be run in triplicate wells with a DNA sample as well as a no-template negative 

control.  

2. Prepare SYBR Green Master mixes for each locus as indicated in Table 4. Mix each 

component thoroughly by vortexing prior to use. A surplus of one or more reactions 

per master mix should be made to allow for loss of solutions to plastic ware and 

pipetting error. 

3. Mix each of the master mixes thoroughly by vortexing and aliquot 18µl per well of a 

384 well plate.  

We use a multi-dispense pipette to speed up the aliquoting process, with a new 

pipette tip used for each of the master mixes.  

4. Vortex the DNA samples and using a multi-dispense pipette, add 2µl of 10ng/µl EcoRI-

digested DNA or no-template control per well.  

Use one pipette tip per three replicate wells, and then discard the tip and use a 

new one prior to pipetting the DNA into next set of three wells containing a 

different master mix. This is necessary to prevent possible cross-contamination 

of master mixes.  

5. Seal the plate using the adhesive plate sealing film.  

Special attention should be taken to ensure that every well and the edges of the 

plate are completely sealed. Any gaps between sealing film and well will lead 

to evaporation of the reaction mixture, thereby altering concentrations of 

reagents and affecting the results. 

6. Briefly spin the plate to ensure the reaction mixtures have collected in the bottom of 

the wells.  

7. Load the plate into the qPCR thermal cycler and run the following profile: 

 

PCR Amplification 

Hold Stage: 50°C 2 minutes 

Denaturation: 95°C 10 minutes 

40 Cycles: 95°C 15seconds, 60°C 1 minute 

 

Melting Curve Analysis 

Heating: 95°C 15seconds 
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Cooling: 60°C 1 minute 

Denaturation: 0.05°C/second to 95°C 

The final denaturation step is carried out under continuous fluorescence monitoring to 

determine the Tm of the amplified product(s). 

 

8. Export melting profiles using the machine software and check for the absence of a 

second peak on the melting peak plot. A single peak indicates amplification of one 

product and therefore specificity of the primer pair. 

 

Assessment of PCR amplification efficiency 

The relative quantification method used in this unit relies on similar amplification efficiencies 

of different primers employed in the protocol. In theory, the amount of PCR product should 

double in each cycle of the PCR reaction, and such a reaction is considered a 100% efficient. 

However, in practice, the amplification efficiency often deviates from the ideal and needs to 

be assessed empirically. Amplification efficiency can be taken as the proportion of target 

molecules within a reaction that are amplified per cycle of PCR. Efficiencies are commonly 

expressed as percentages and are determined by generating standard curves. This entails 

plotting the Cq values of reactions containing decreasing concentrations of DNA over a 1:5 

serial dilution against the logarithmic values of DNA concentrations. This should yield a linear 

plot, the slope of which is used in determining the amplification efficiency. 

 

 

1. Serially dilute EcoRI digested DNA 1:5 in nuclease-free water to generate five samples 

of decreasing DNA concentration ranging from 50ng/µl to 0.08ng/µl. 

2. Set up a qPCR reaction for the candidate primer pairs as per Basic Protocol 4. Each 

DNA concentration should be treated as a new sample. For this assay there is no 

requirement for a specific calibrator or positive control. A negative no-template control 

should still be included. 

3. Run the reaction as per the temperature profile in Basic Protocol 4.  

4. Upon completion of the reaction, export Cq values and plot them against the 

concentration of DNA on a logarithmic scale with a line of best fit between datasets. 

5. Calculate the slope of the line of best fit and determine the efficiency of amplification 

for each primer pair as a percentage using the following equation:  
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Efficiency = -1+10-(1/slope) * 100% 

 

6. A primer pair for each locus should be selected based on efficiency closest to that of 

the internal reference locus.  

Primer efficiencies ranging from 90-115% are acceptable. If no candidate efficiencies 

fall within these limits then further primer pairs should be designed and tested. 

 

 

REAGENTS AND SOLUTIONS 
 

TE Buffer 

10 mM Tris-HCl, pH 8.0 

0.1 mM EDTA 

0.0375M KCl 

3,75 mL 1M KCl 

96,25 mL ddH2O 

10 µM primer mixes 

Primer sequences for each of the target and reference loci are listed in Table 1. Primers 

purchased in a lyophilised form are resuspended in TE Buffer or ddH2O to a final concentration 

of 100µM. Working solutions of primers are made by combining the forward and reverse 

primer for each locus, with each primer at a final concentration of 10µM: 

   50µl 100µM forward primer 

   50µl 100µM reverse primer 

   400µl ddH2O 

Working stocks can be stored for up to 3 months at 4°C, whereas stock solutions should be 

stored at -20°C for long-term storage.  
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COMMENTARY 
 
Background Information 
 
The possibility of culture-acquired genetic variants invalidating the outcomes of experimental 

results or safety and efficacy of clinical therapies, has brought sharply into focus the need for 

regular screening of cultures. Although an early identification of variants is pivotal in 

preventing them from overtaking the cultures, at the practical level, the frequent screening 

using methods such as karyotyping, FISH or CGH arrays, is hampered by the need for 

specialised expertise and high costs involved. The qPCR-based method described in this unit, 

based on that originally described by Baker et al. (2016), screens for five of the most common 

chromosomal abnormalities reported in hPSCs. The primary advantages of this technique lie 

in its accessibility, low cost (less than £10/sample) and fast turnaround. Furthermore, it has the 

ability to detect very small amplifications and deletions that fall below the resolution of 

karyotyping. The chromosome 20q CNV is one such frequently arising change that necessitates 

the use of methods alternative to karyotyping. Indeed, in an International Stem Cell Initiative 

study over 20% of 120 cell lines tested had a gain of 20q CNV, but as many as 22 of them were 

missed by karyology (International Stem Cell et al., 2011). The sensitivity of the qPCR assay 

to detect mosaic abnormalities in hPSC cultures is also comparable to other commonly 

employed methods, such as karyotyping and FISH, allowing detection of variants when they 

are present at 10% or more of all cells within a culture (Baker et al., 2016). However, it should 

be noted that the qPCR assay described here has a number of inherent drawbacks. First and 

foremost, this method can only detect copy number changes in the regions targeted with 

primers. Hence, any other copy number changes outside of the examined loci will go 

undetected. Also, the results obtained by this method are indicative only of copy numbers of 

the specific genes screened and bare no reference to the nature of the genetic abnormality. For 

instance, a copy number of three could indicate a gain of a whole chromosome as is the case 
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for chromosomes 1 and 12 in S6-GFP hPSC sample shown on Figure 2. Alternatively, the 

copy number of three could also represent a tandem duplication of a very small amplicon, as 

is the case for chromosome 20q gain in TC113 E12-RFP hPSC clone (Figure 2). A further 

possibility is the occurrence of an isochromosome. Classically, acquisition of an 

isochromosome entails an unbalanced structural rearrangement of arms of a chromosome 

whereby either a p or q arm of a chromosome is lost and replaced with a q or p arm respectively, 

resulting in a chromosome comprised 2 p arms or 2 q arms. Distinguishing between a whole 

chromosome gain, an isochromosome or a CNV is theoretically possible by qPCR, but it 

requires the use of primers on the p arm to reveal if the p arm is also amplified (a whole 

chromosome gain), there is no change in p arm copy (CNV gain) or p arm has only one copy 

(isochromosome of 20q). Finally, the qPCR assay is also unable to detect structural variants 

that show no net gain or loss in genetic material, i.e. balanced translocations. Hence, we 

recommend that the qPCR assay detailed here should be used as a rapid and simple first-pass 

screen to frequently monitor hPSC cultures or to examine the presence of most common genetic 

changes in clones following reprogramming or genetic modifications. For more detailed 

genome-wide analyses, additional methods such as SNP arrays or next generation sequencing 

methods should be employed. 

 

Critical Parameters  
The success of the assay relies on the access to an appropriate calibrator DNA sample, as all 

test samples are compared to the calibrator. If the calibrator DNA is of poor quality or is not 

diploid for all analysed loci and for the internal reference gene, the results for the test samples 

will be skewed accordingly. For example, data normalised to a calibrator sample harbouring a 

10% population of cells with 1q trisomy could designate a test sample harbouring 20% 

population of cells with 1q trisomy as “normal”. Hence, in addition to a calibrator DNA, a 

positive control with a known trisomy or monosomy of target regions should ideally be 
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included within each qPCR run. The inclusion of positive control samples serves as an 

objective quality control of the qPCR run, whereby the assay is designated as failed if the 

positive control copy number results deviate from the ones expected. 

 

Troubleshooting 
Problem Possible cause Solution 
Results for a given locus 
consistently high/low across 
samples 

Calibrator DNA and or 
working primer stocks 
degraded 

Thaw fresh aliquots of 
calibrator gDNA and primer 
mixes. 

Calibrator DNA includes 
population of CNV cells  

Use a different calibrator 
sample  

Poor primer design Consider using different 
primer pairs for the locus in 
question 

High Cq variability between 
triplicate wells 

Pipetting Error Ensure that the pipette tip 
reaches the bottom of each 
well prior to dispensing. 
Avoid touching other parts of 
the plate with a loaded tip. 

Poorly mixed qPCR master 
mix or DNA sample 

Vortex all components 
thoroughly prior to 
dispensing into wells of the 
plate. 

Reaction evaporation due to 
ineffective sealing of plate 

Take care to ensure every 
well on the PCR plate is 
sealed appropriately with the 
film.  

Implausibly low copy 
number results (<1) 

Low quality sample DNA, 
possibly due to degradation 
of DNA sample or co-
purification of molecules 
inhibitory to PCR during the 
DNA extraction. 

Use nuclease-free water and 
solutions during DNA 
extraction. Store DNA 
samples at 4°C for short 
periods of time or at -20°C 
for long term storage. If 
freezing the samples, avoid 
repeated freeze-thaw cycles. 
If the quality of DNA is low 
due to poor extraction, 
consider counting the cells to 
ensure that the columns are 
not overloaded beyond their 
capacity.  

 
 
Expected Results 
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Typically, the results of this qPCR assay yield copy number values between two and three for 

chromosomes 1q, 12p, 17q and 20q, and between one and two for chromosome 18q. A copy 

number value of three for a particular locus indicates that the whole cell population tested is 

trisomic for that locus. On the other hand, a copy number value higher than ~2.2 and lower 

than ~2.8 would indicate that a cell population is mosaic for the presence of variant cells. 

Although trisomies are the most common abnormalities in hPSCs, multiple gains of 20q CNV 

have also been noted. For example, we have detected a population of cells with four copies of 

20q in TC113 E6-RFP hPSCs (Figure 2).  

 

 
Time Considerations 
The whole qPCR-based assay described here, from DNA extraction and digestion, to qPCR set 

up and PCR run to interpretation of qPCR results, can be completed within a day. However, 

this assumes that the calibrator DNA has been obtained and validated as diploid. Given that 

the validation means include methods alternative to qPCR (such as karyotyping, FISH, CGH 

or SNP arrays), the whole process of establishing the calibrator DNA can take several weeks. 

It is advisable to make larger batches of the calibrator DNA, as once obtained, it can be used 

for any further testing.  
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FIGURE LEGENDS 
Figure 1 
Example of a 384-well plate layout for the qPCR assay. Samples, including calibrator (blue), 
positive control (red), and no template negative control (black) are arranged in columns of three 
replicate wells. Master mixes for each locus are arranged in rows in 2 repeating modules at the 
top and bottom of the plate. 
 
 
Figure 2 
QPCR analysis of the copy numbers at loci 1q, 12p, 17q, 18q and 20q in four different hPSC 
lines. Green lines on graphs denote cut-off points above or below which the samples can be 
deemed positive for the presence of the variant cells.  S6-GFP is the positive control sample 
and exhibits trisomies at all loci with the exception of 18q.  TC113 G7 shows a copy number 
of 2 at all screened loci, as confirmed by karyology. TC113 E12-RFP was originally a clonal 
population with trisomy of 20q only however, over time in culture has acquired trisomy of 12p 
in a population of cells. TC113 E6-RFP has gained a triplication at locus 20q. 
 
Figure 3  
The application of the qPCR assay in the determining the length of the 20q CNV. 
A. Schematic representation of the chromosome 20q amplicon, indicating gene names where 
the primers for screening the amplicon length are located.  
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B. Assessment of the chromosome 20q CNV length in the cell line NCRM1. The 20q CNV 
length is assessed based on the copy number change. The overall amplicon length in this line 
is approximately 480kb, with the breakpoint situated between the genes TPX2 and MYLK2. 
 
 
TABLES 

Table 1. Details of the target loci included in the qPCR assay.  

Target  
locus 

Gene (location) 
Accession 
Number 

Primer Sequences 
(forward and reverse) 

UPL Probe 
Number 

Amplicon 
Length (bp) 

4p RELL1 (4p14) 
NC_000004.12 

tgcttgctcagaaggagctt 
tgggttcaggaacagagaca 

 #12 64 

1q MDM4 (1q32.1) 
NC_000001.11 

gcccccagacctaaatcaat 
tcggtatgacagcaatgtctct 

 #13 76 

12p DPPA3 
(12p.13.31) 
NC_000012.12 

cgtagcgtcgttgcatca 
tcctttttaccgttcctgaca 

 #60 60 

17q TK1 (17q23.2-
q25.3) 
NC_000017.11 

ggtgacagctgcttacagcttag 
actggttgccaccttctcag 

 #60 64 

18q PHLPP1 
(18q21.33) 
NC_000018.10 

tcaagcattgcccttagctt 
gccttaaagcatcacttccatc 

 #25 88 

20q BCL2L1 
(20q11.21) 
NC_000020.11 

tctgcagaaggctaccccta 
tgctgtgtctaagacctctttcat 

 #44 75 

 

 

Table 2. qPCR master mix volumes 

Component Final 
concentration 

Volume/reaction 
(µl) 

Nuclease Free water  2.8 

TaqMan® Fast 
Universal PCR Mix (2X) 

1X 5 

Forward and Reverse 
Primer Mix 10 µM 

0.1 µM 0.1 

Universal Probe Library 
 hydrolysis probe 10 µM 

0.1 µM 0.1µl 

 
 

Table 3. Primers and UPL probes used to determine the length of the chromosome 20q CNV 

region. 
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Target  
locus 

Gene (location) 
Accession 
Number 

Primer Sequences 
(forward and reverse) 

UPL Probe 
Number 

Amplicon 
Length (bp) 

4p RELL1 (4p14) 
NC_000004.12 

tgcttgctcagaaggagctt 
tgggttcaggaacagagaca 

 #12 64 

20q DEFB115 
(20q11.21) 
31,257,664 
NM_001037730.1 

tcagcctgaacattctggtaaa  
cacttgtcttttccccaaactc 

 #14 76 

20q REM1 (20q11.21) 
31,475,272 
NM_014012.5 

ccccttttctcactccacaa  
tctgcagggggagaagtaca 

 #46 64 

20q BCL2L1 
(20q11.21) 
31,664,452 
NC_000020.11 

tctgcagaaggctaccccta 
tgctgtgtctaagacctctttcat 

 #44 75 

20q TPX2 (20q11.21) 
31,739,101 
NM_012112.4 

cccccaaatcaggcctac  
ttaaagcaaaatccaggagtcaa 

 #35 59 

20q MYLK2 
(20q11.21) 
31,819,375 
NC_000020.11 

ggtcaggagaacccagagtg  
gtctcccagggcacttcag 

 #16 62 

20q XKR7 (20q11.21) 
31,968,002 
NM_033118.3 

gtgtcttaccggggtcctatc  
gcctggaaggtgtgcagta 

#3 59 

20q TM9SF4 
(20q11.21) 
32,109,506 
NM_014742.3 

taatggagccaatgccagta  
caaaaccagtttctgtgccttt 

#45 59 

20q ASXL1 
(20q11.21) 
32,358,062  
NM_015338.5 

gagtgtcactgtggatgggtag  
ctggcatatggaaccctcac 

#13 59 

 
 
 
 
 
Table 4. SYBR® Green master mix volumes 
 
Component Final 

concentration 
Volume/reaction 
(µl) 

Nuclease Free water  7.8 
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SYBR® Green 
JumpStart™ Taq 
ReadyMix™ 

1X 10 

Forward and Reverse 
Primer Mix 10 µM 

0.1 µM 0.2 

 
 
 



Master 

mixes for 

loci tested

Calibrator

Positive 

control Sample 1 Sample 2 Sample 3 Sample 4 Sample 6Sample 5

Sample 7 Sample 8 Sample 9 Sample 10 Sample 12Sample 11 Sample 13 No Template

Control

Figure 1.
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