66 research outputs found

    Diagnostic value of CSF protein profile in a Portuguese population of sCJD patients

    Get PDF
    The clinical diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD) is difficult, and reliable markers are highly desired. In this work we assess the value of several cerebrospinal fluid (CSF) markers for sCJD diagnosis. Within the framework of the Portuguese Epidemiological Surveillance Program for Human Prion Diseases, CSF samples from 71 patients with clinically suspected sCJD, 30 definite sCJD and 41 non-CJD patients, were analysed for the presence of 14-3-3 protein. CSF levels of tau (t-tau), and phosphorylated tau (p-tau181), S-100b and beta amyloid (Abeta42) proteins were determined. The influence of clinical and genetic characteristics on CSF markers sensitivity was also evaluated. Protein 14-3-3 was detected in 29/30 sCJD patients and 9/41 non-CJD patients. Extremely elevated t-tau and S-100b protein levels were found in sCJD patients, while p-tau181 levels were only slightly elevated and Abeta42 showed no differences compared to controls. 14-3-3 was the most sensitive parameter (97%), but its specificity was low (78%); sensitivity/specificity for other proteins were: S-100b-93/93%, t-tau-93/95%, with maximum accuracy being obtained by a combination of tests (14-3-3 combined with either t-tau or S-100b, or combining S-100b with t-tau/Abeta42 or p-tau/t-tau ratios). The sensitivity of 14-3-3, as well as of p-tau181/t-tau ratio, was decreased in younger patients with long disease duration, with the PrP-2 isotype and MV genotype. Both 14-3-3, t-tau and S-100b are sensitive markers for sCJD, but 14-3-3 specificity seems to be lower in this special clinical setting of rapidly progressing dementias. We propose that in cases with a 14-3-3 weak positive result, or in young patients with long disease duration, a second CSF marker would be valuable for the diagnosis of sCJD

    CSF Tau proteins reduce misdiagnosis of sporadic Creutzfeldt-Jakob disease suspected cases with inconclusive 14-3-3 result

    Get PDF
    Cerebrospinal fluid (CSF) 14-3-3 protein supports sporadic Creutzfeldt-Jakob (sCJD) diagnosis, but often leads to weak-positive results and lacks standardization. In this study, we explored the added diagnostic value of Total Tau (t-Tau) and phosphorylated Tau (p-Tau) in sCJD diagnosis, particularly in the cases with inconclusive 14-3-3 result. 95 definite sCJD and 287 patients without prion disease (non-CJD) were included in this study. CSF samples were collected in routine clinical diagnosis and analysed for 14-3-3 detection by Western blot (WB). CSF t-Tau and p-Tau were quantified by commercial ELISA kits and PRNP and APOE genotyping assessed by PCR-RFLP. In a regression analysis of the whole cohort, 14-3-3 protein revealed an overall accuracy of 82 % (sensitivity = 96.7 %; specificity = 75.6 %) for sCJD. Regarding 14-3-3 clear positive results, we observed no added value either of t-Tau alone or p-Tau/t-Tau ratio in the model. On the other hand, considering 14-3-3 weak-positive cases, t-Tau protein increased the overall accuracy of 14-3-3 alone from 91 to 94 % and specificity from 74 to 93 % (p < 0.05), with no sensitivity improvement. However, inclusion of p-Tau/t-Tau ratio did not significantly improve the first model (p = 0.0595). Globally, t-Tau protein allowed a further discrimination of 65 % within 14-3-3 inconclusive results. Furthermore, PRNP MV genotype showed a trend to decrease 14-3-3 sensitivity (p = 0.051), but such effect was not seen on t-Tau protein. In light of these results, we suggest that t-Tau protein assay is of significant importance as a second marker in identifying 14-3-3 false-positive results among sCJD probable cases

    Mitochondrial- and Endoplasmic Reticulum-Associated Oxidative Stress in Alzheimer's Disease: From Pathogenesis to Biomarkers

    Get PDF
    Alzheimer's disease (AD) is the most common cause of dementia in the elderly, affecting several million of people worldwide. Pathological changes in the AD brain include the presence of amyloid plaques, neurofibrillary tangles, loss of neurons and synapses, and oxidative damage. These changes strongly associate with mitochondrial dysfunction and stress of the endoplasmic reticulum (ER). Mitochondrial dysfunction is intimately linked to the production of reactive oxygen species (ROS) and mitochondrial-driven apoptosis, which appear to be aggravated in the brain of AD patients. Concomitantly, mitochondria are closely associated with ER, and the deleterious crosstalk between both organelles has been shown to be involved in neuronal degeneration in AD. Stimuli that enhance expression of normal and/or folding-defective proteins activate an adaptive unfolded protein response (UPR) that, if unresolved, can cause apoptotic cell death. ER stress also induces the generation of ROS that, together with mitochondrial ROS and decreased activity of several antioxidant defenses, promotes chronic oxidative stress. In this paper we discuss the critical role of mitochondrial and ER dysfunction in oxidative injury in AD cellular and animal models, as well as in biological fluids from AD patients. Progress in developing peripheral and cerebrospinal fluid biomarkers related to oxidative stress will also be summarized

    Association between Adipokines and Biomarkers of Alzheimer's Disease: A Cross-Sectional Study

    Get PDF
    BACKGROUND: Adipose tissue dysfunction has been implicated in the pathophysiology of Alzheimer's disease. However, the involvement of adipokines, particularly adiponectin, remains unclear. OBJECTIVE: To compare serum and cerebrospinal fluid (CSF) levels of adiponectin, leptin and leptin-to-adiponectin ratio in patients within the spectrum of Alzheimer's disease and evaluate their relationship with classical biomarkers and their value as markers of progression. METHODS: Amnestic mild cognitive impairment (MCI, n = 71) and Alzheimer's dementia (AD, n = 53) subjects were consecutively recruited for serum and CSF adiponectin and leptin determination using an analytically validated commercial enzyme-linked immunosorbent assay (ELISA). Correlations were explored using adjusted Spearman's correlation coefficients. A logistic regression model and ROC analysis were performed to evaluate the staging predictive value of adipokines. RESULTS: Serum adiponectin was 33% higher in AD when compared to MCI patients. Adiponectin CSF levels, similar in both groups, were positively correlated with Aβ42 and cognitive function, though only in women. The area under the ROC curve was 0.673 (95% CI:0.57-0.78) for serum adiponectin as predictor of dementia stage and the cut-off 10.85μg/ml maximized the sum of specificity (87%) and sensitivity (44%). CONCLUSION: Although longitudinal studies are required, we hypothesize that higher serum adiponectin in AD patients constitutes a strategy to compensate possible central signaling defects. In addition, adiponectin might be specifically assigned to neuroprotective functions in women and eventually involved in the female-biased incidence of Alzheimer's disease.info:eu-repo/semantics/publishedVersio

    Adenosine Deaminase Two and Immunoglobulin M Accurately Differentiate Adult Sneddon's Syndrome of Unknown Cause

    Get PDF
    BACKGROUND: The association that exists between livedo reticularis (LR) and stroke is known as Sneddon's syndrome (SnS). The disorder is classified as primary SnS (PSnS), if the cause remains unknown and secondary SnS. The condition is rare and it occurs mainly sporadically. In 2014, 2 independent teams described a new genetic disorder with childhood-onset, which was called deficiency of adenosine deaminase 2 (DADA2), characterized by recurrent fevers and vascular pathologic features that included LR and stroke. All the patients carried recessively inherited mutations in cat eye syndrome chromosome region candidate 1 gene (CECR1), encoding the adenosine deaminase 2 (ADA2) protein. Genetic testing is the standard for the diagnosis of DADA2. However, the diagnostic accuracy of more affordable laboratorial analysis in CECR1-mutated individuals remains to be established. We aim to determine whether plasma ADA2 activity and serum immunoglobulin M (IgM) levels can distinguish (1) DADA2 from other adult patients within the SnS spectrum, and (2) healthy CECR1 heterozygous (HHZ) from healthy controls (HC). METHODS: ADA2 activity in plasma and serum IgM concentrations was measured in adult patients within the SnS spectrum, healthy first-degree relatives and HC. Genetic results were used as the reference standard. The primary outcome measures were sensitivity and specificity derived from receiver operating curve analysis. RESULTS: A total of 73 participants were included in the study: 26 patients with PSnS with no CECR1 mutation (PSnS), 6 bi-allelic (DADA2 patients) and 7 HHZ CECR1 mutations and 34 HC. Plasma ADA2 activity and serum IgM levels were significantly lower in DADA2 patients than in PSnS. With the use of the best indexes, plasma ADA2 activity differentiated PSnS from DADA2 with a sensitivity and specificity of 100.0% and HHZ from HC with a sensitivity of 97.1% and specificity of 85.7%. Serum IgM levels also differentiated PSnS from DADA2 with a sensitivity of 85.2% and specificity of 83.3%. CONCLUSION: Serum IgM levels might be used as a triage tool and plasma ADA2 activity performs perfectly as a diagnostic test for DADA2 in adult patients within the SnS spectrum. ADA2 activity in plasma also reliably distinguishes HHZ from HC.info:eu-repo/semantics/publishedVersio

    Oxidative stress involving changes in Nrf2 and ER stress in early stages of Alzheimer's disease

    Get PDF
    AbstractOxidative stress and endoplasmic reticulum (ER) stress have been associated with Alzheimer's disease (AD) progression. In this study we analyzed whether oxidative stress involving changes in Nrf2 and ER stress may constitute early events in AD pathogenesis by using human peripheral blood cells and an AD transgenic mouse model at different disease stages. Increased oxidative stress and increased phosphorylated Nrf2 (p(Ser40)Nrf2) were observed in human peripheral blood mononuclear cells (PBMCs) isolated from individuals with mild cognitive impairment (MCI). Moreover, we observed impaired ER Ca2+ homeostasis and increased ER stress markers in PBMCs from MCI individuals and mild AD patients. Evidence of early oxidative stress defense mechanisms in AD was substantiated by increased p(Ser40)Nrf2 in 3month-old 3xTg-AD male mice PBMCs, and also with increased nuclear Nrf2 levels in brain cortex. However, SOD1 protein levels were decreased in human MCI PBMCs and in 3xTg-AD mice brain cortex; the latter further correlated with reduced SOD1 mRNA levels. Increased ER stress was also detected in the brain cortex of young female and old male 3xTg-AD mice. We demonstrate oxidative stress and early Nrf2 activation in AD human and mouse models, which fails to regulate some of its targets, leading to repressed expression of antioxidant defenses (e.g., SOD-1), and extending to ER stress. Results suggest markers of prodromal AD linked to oxidative stress associated with Nrf2 activation and ER stress that may be followed in human peripheral blood mononuclear cells

    Biomarker-based prognosis for people with mild cognitive impairment (ABIDE): a modelling study

    Get PDF
    Background Biomarker-based risk predictions of dementia in people with mild cognitive impairment are highly relevant for care planning and to select patients for treatment when disease-modifying drugs become available. We aimed to establish robust prediction models of disease progression in people at risk of dementia. Methods In this modelling study, we included people with mild cognitive impairment (MCI) from single-centre and multicentre cohorts in Europe and North America: the European Medical Information Framework for Alzheimer's Disease (EMIF-AD; n=883), Alzheimer's Disease Neuroimaging Initiative (ADNI; n=829), Amsterdam Dementia Cohort (ADC; n=666), and the Swedish BioFINDER study (n=233). Inclusion criteria were a baseline diagnosis of MCI, at least 6 months of follow-up, and availability of a baseline Mini-Mental State Examination (MMSE) and MRI or CSF biomarker assessment. The primary endpoint was clinical progression to any type of dementia. We evaluated performance of previously developed risk prediction models—a demographics model, a hippocampal volume model, and a CSF biomarkers model—by evaluating them across cohorts, incorporating different biomarker measurement methods, and determining prognostic performance with Harrell's C statistic. We then updated the models by re-estimating parameters with and without centre-specific effects and evaluated model calibration by comparing observed and expected survival. Finally, we constructed a model combining markers for amyloid deposition, tauopathy, and neurodegeneration (ATN), in accordance with the National Institute on Aging and Alzheimer's Association research framework. Findings We included all 2611 individuals with MCI in the four cohorts, 1007 (39%) of whom progressed to dementia. The validated demographics model (Harrell's C 0·62, 95% CI 0·59–0·65), validated hippocampal volume model (0·67, 0·62–0·72), and updated CSF biomarkers model (0·72, 0·68–0·74) had adequate prognostic performance across cohorts and were well calibrated. The newly constructed ATN model had the highest performance (0·74, 0·71–0·76). Interpretation We generated risk models that are robust across cohorts, which adds to their potential clinical applicability. The models could aid clinicians in the interpretation of CSF biomarker and hippocampal volume results in individuals with MCI, and help research and clinical settings to prepare for a future of precision medicine in Alzheimer's disease. Future research should focus on the clinical utility of the models, particularly if their use affects participants' understanding, emotional wellbeing, and behaviour

    Diagnostic accuracy of cerebrospinal fluid protein markers for sporadic Creutzfeldt-Jakob disease in Canada: a 6-year prospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To better characterize the value of cerebrospinal fluid (CSF) proteins as diagnostic markers in a clinical population of subacute encephalopathy patients with relatively low prevalence of sporadic Creutzfeldt-Jakob disease (sCJD), we studied the diagnostic accuracies of several such markers (14-3-3, tau and S100B) in 1000 prospectively and sequentially recruited Canadian patients with clinically suspected sCJD.</p> <p>Methods</p> <p>The study included 127 patients with autopsy-confirmed sCJD (prevalence = 12.7%) and 873 with probable non-CJD diagnoses. Standard statistical measures of diagnostic accuracy were employed, including sensitivity (Se), specificity (Sp), predictive values (PVs), likelihood ratios (LRs), and Receiver Operating Characteristic (ROC) analysis.</p> <p>Results</p> <p>At optimal cutoff thresholds (empirically selected for 14-3-3, assayed by immunoblot; 976 pg/mL for tau and 2.5 ng/mL for S100B, both assayed by ELISA), Se and Sp respectively were 0.88 (95% CI, 0.81-0.93) and 0.72 (0.69-0.75) for 14-3-3; 0.91 (0.84-0.95) and 0.88 (0.85-0.90) for tau; and 0.87 (0.80-0.92) and 0.87 (0.84-0.89) for S100B. The observed differences in Sp between 14-3-3 and either of the other 2 markers were statistically significant. Positive LRs were 3.1 (2.8-3.6) for 14-3-3; 7.4 (6.9-7.8) for tau; and 6.6 (6.1-7.1) for S100B. Negative LRs were 0.16 (0.10-0.26) for 14-3-3; 0.10 (0.06-0.20) for tau; and 0.15 (0.09-0.20) for S100B. Estimates of areas under ROC curves were 0.947 (0.931-0.961) for tau and 0.908 (0.888-0.926) for S100B. Use of interval LRs (iLRs) significantly enhanced accuracy for patient subsets [<it>e.g</it>., 41/120 (34.2%) of tested sCJD patients displayed tau levels > 10,000 pg/mL, with an iLR of 56.4 (22.8-140.0)], as did combining tau and S100B [<it>e.g</it>., for tau > 976 pg/mL and S100B > 2.5 ng/mL, positive LR = 18.0 (12.9-25.0) and negative LR = 0.02 (0.01-0.09)].</p> <p>Conclusions</p> <p>CSF 14-3-3, tau and S100B proteins are useful diagnostic markers of sCJD even in a low-prevalence clinical population. CSF tau showed better overall diagnostic accuracy than 14-3-3 or S100B. Reporting of quantitative assay results and combining tau with S100B could enhance case definitions used in diagnosis and surveillance of sCJD.</p

    Prion-specific and surrogate CSF biomarkers in Creutzfeldt-Jakob disease:diagnostic accuracy in relation to molecular subtypes and analysis of neuropathological correlates of p-tau and A beta 42 levels

    Get PDF
    The differential diagnosis of Creutzfeldt-Jakob disease (CJD) from other, sometimes treatable, neurological disorders is challenging, owing to the wide phenotypic heterogeneity of the disease. Real-time quaking-induced prion conversion (RT-QuIC) is a novel ultrasensitive in vitro assay, which, at variance with surrogate neurodegenerative biomarker assays, specifically targets the pathological prion protein (PrPSc). In the studies conducted to date in CJD, cerebrospinal fluid (CSF) RT-QuIC showed good diagnostic sensitivity (82\u201396%) and virtually full specificity. In the present study, we investigated the diagnostic value of both prion RT-QuIC and surrogate protein markers in a large patient population with suspected CJD and then evaluated the influence on CSF findings of the CJD type, and the associated amyloid-\u3b2 (A\u3b2) and tau neuropathology. RT-QuIC showed an overall diagnostic sensitivity of 82.1% and a specificity of 99.4%. However, sensitivity was lower in CJD types linked to abnormal prion protein (PrPSc) type 2 (VV2, MV2K and MM2C) than in typical CJD (MM1). Among surrogate proteins markers (14-3-3, total (t)-tau, and t-tau/phosphorylated (p)-tau ratio) t-tau performed best in terms of both specificity and sensitivity for all sCJD types. Sporadic CJD VV2 and MV2K types demonstrated higher CSF levels of p-tau when compared to other sCJD types and this positively correlated with the amount of tiny tau deposits in brain areas showing spongiform change. CJD patients showed moderately reduced median A\u3b242 CSF levels, with 38% of cases having significantly decreased protein levels in the absence of A\u3b2 brain deposits. Our results: (1) support the use of both RT-QuIC and t-tau assays as first line laboratory investigations for the clinical diagnosis of CJD; (2) demonstrate a secondary tauopathy in CJD subtypes VV2 and MV2K, correlating with increased p-tau levels in the CSF and (3) provide novel insight into the issue of the accuracy of CSF p-tau and A\u3b242 as markers of brain tauopathy and \u3b2-amyloidosis

    Recommendations for CSF AD biomarkers in the diagnostic evaluation of MCI

    Get PDF
    This article presents recommendations, based on the Grading of Recommendations, Assessment, Development, and Evaluation method, for the clinical application of cerebrospinal fluid (CSF) amyloid-β1-42, tau, and phosphorylated tau in the diagnostic evaluation of patients with mild cognitive impairment (MCI). The recommendations were developed by a multidisciplinary working group and based on the available evidence and consensus from focused group discussions for 1) prediction of clinical progression to Alzheimer's disease (AD) dementia, 2) cost-effectiveness, 3) interpretation of results, and 4) patient counseling. The working group recommended using CSF AD biomarkers in the diagnostic workup of MCI patients, after prebiomarker counseling, as an add-on to clinical evaluation to predict functional decline or conversion to AD dementia and to guide disease management. Because of insufficient evidence, it was uncertain whether CSF AD biomarkers outperform imaging biomarkers. Furthermore, the working group provided recommendations for interpretation of ambiguous CSF biomarker results and for pre- and post-biomarker counseling
    corecore