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Oxidative stress and endoplasmic reticulum (ER) stress have been associatedwith Alzheimer's disease (AD) pro-
gression. In this study we analyzedwhether oxidative stress involving changes in Nrf2 and ER stress may consti-
tute early events in ADpathogenesis by using humanperipheral blood cells and anAD transgenicmousemodel at
different disease stages. Increased oxidative stress and increased phosphorylated Nrf2 (p(Ser40)Nrf2) were
observed in human peripheral blood mononuclear cells (PBMCs) isolated from individuals with mild cognitive
impairment (MCI). Moreover, we observed impaired ER Ca2+ homeostasis and increased ER stress markers in
PBMCs from MCI individuals and mild AD patients. Evidence of early oxidative stress defense mechanisms in
AD was substantiated by increased p(Ser40)Nrf2 in 3 month-old 3xTg-AD male mice PBMCs, and also with in-
creased nuclear Nrf2 levels in brain cortex. However, SOD1 protein levels were decreased in human MCI
PBMCs and in 3xTg-AD mice brain cortex; the latter further correlated with reduced SOD1 mRNA levels. In-
creased ER stress was also detected in the brain cortex of young female and old male 3xTg-ADmice.We demon-
strate oxidative stress and early Nrf2 activation in AD human andmousemodels, which fails to regulate some of
its targets, leading to repressed expression of antioxidant defenses (e.g., SOD-1), and extending to ER stress.
Results suggest markers of prodromal AD linked to oxidative stress associated with Nrf2 activation and ER stress
that may be followed in human peripheral blood mononuclear cells.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Alzheimer's disease (AD), the most prevalent form of dementia in
the elderly, is characterized by memory deficits and cognitive de-
cline that arise from synaptic and neuronal loss in the hippocampus
and cerebral cortex ([50,74], for review). Main neuropathological
hallmarks in AD brains are abnormal deposition of amyloid-beta
peptide (Aβ) in extracellular senile plaques and intracellular neuro-
fibrillary tangles formed by hyperphosphorylated tau. Mild cognitive
impairment (MCI) is an intermediate stage between cognitively
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normal individuals and patients with AD [33]. About 10–20% of peo-
ple aged 65 and older have MCI and approximately 15% of these indi-
viduals progress to dementia every year [83]. Therefore, alterations
occurring in MCI individuals can be crucial to understand early
basic mechanisms responsible for the neurodegenerative process in
AD and develop effective disease-modifying strategies. Although not
stopping AD progression, memantine (Mem) and acetylcholinesterase
(AChE) inhibitors are presently the available therapies to ameliorate
AD cognitive symptoms.

Oxidative stress, commonly linked to mitochondrial dysfunction,
has been identified as an important mechanism leading to neuronal
death in AD [10]. Similarly, other mechanisms of neurodegeneration
have been described, namely impaired Ca2+ homeostasis and endo-
plasmic reticulum (ER) stress [27,28]. Indeed, we and other authors
have shown that Aβ1–42 oligomeric species cause disorganization of
the cytoskeleton and neurite retraction [55], intracellular Ca2+

(Ca2+i) deregulation [25], ER stress and apoptosis [15,29,59]. Oxida-
tive stress markers have been shown in MCI brains [4,65], in the
plasma and erythrocytes of MCI and mild AD patients [3,4] and in
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the brain of transgenic AD mice before plaque deposition [68], sug-
gesting that oxidative damage occurs in early stages of the disease
and that progression to AD might be related to depletion of antioxi-
dant defenses. Aβ was also demonstrated to induce oxidative stress
in cultured hippocampal and cortical neurons [20,29].

There are evidences for modifications in transcription factors re-
lated with mitochondrial biogenesis and antioxidant defenses in
AD [11]. In this respect, low levels of reactive oxygen species (ROS)
induce nuclear factor erythroid derived 2-related (Nrf2) activation,
a transcription factor that regulates the antioxidant response, in as-
trocytes from mixed neuron/astrocyte cultures, contributing to neu-
roprotection [6] and helping to delay AD-like pathology in APP/PS1
mice [41]. Decreased Nrf2 levels were detected in the nucleus of hip-
pocampal neurons of human AD brains [66], suggesting diminished
Nrf2-mediated transcription of antioxidant and detoxifying genes.
Mild/moderate ER stress may be a trigger for nuclear translocation
of Nrf2 and subsequent activation of an antioxidant response [19].
Recently, Glover-Cutter and colleagues (2013) demonstrated in the
Caenorhabditis elegans that the inducible transcription factor SKN-
1, a homologue of mammalian Nrf proteins, is regulated by the ER
unfolded protein response (UPR), directly controls UPR signaling
and transcription factor genes, binds to common downstream tar-
gets with XBP-1 and ATF-6, and is present at the ER. Moreover,
SKN-1/Nrf was also found essential for resistance to ER stress and
SKN-1/Nrf-mediated responses to oxidative stress were shown to
depend upon signaling from the ER [14]. However, in severe and/or
prolonged situations of ER stress, activation of protective mecha-
nisms is not sufficient to restore normal ER function, and cells initiate
autophagy or apoptosis [79]. Under these conditions, ER may be a
source of oxidative stress [34]. Several studies established a correla-
tion between abnormal ER function and AD progression [36,72] and
Aβ has been shown to induce ER stress both in vitro and in vivo, sub-
sequently leading to apoptotic cell death [16,30,80]. Furthermore, ER
dysfunction can partially account for the perturbation of Ca2+i ho-
meostasis reported in AD patient's brain and peripheral cells [49]. Al-
though these pathological mechanisms have been ascribed to AD
progression, it is still unclear whether they constitute early events
contributing to AD pathogenesis.

The long history of searching for human peripheral markers capable
of reflecting AD pathology within the brain has prompted studies
looking at changes occurring in peripheral blood samples, which can
be easily accessible. Of relevance, decreases in antioxidant defenses
were previously described in peripheral blood samples from MCI indi-
viduals and mild AD patients, indicating antioxidant depletion during
progression to AD [3]. Studies in peripheral blood mononuclear cells
(PBMCs) isolated from AD patients support that pro-apoptotic proteins
may provide systemic markers for AD [77]. Eckert and colleagues
(1998) found that apoptosis is induced in lymphocytes and neurons
with similar oxidative stress inductors and that susceptibility to apopto-
sis is altered in AD lymphocytes relatively to controls. Furthermore, AD
patient's lymphocytes showed significantly higher apoptosis in vitro[23,
44]. Screening of cytokines produced by PBMCs also showed that alter-
ations in immune response may precede clinical AD, since changes in
cytokine production were observed in PBMCs from individuals with
MCI [45].

In the present study we examined early formation of ROS involving
changes in Nrf2 and ER stress in in vivo AD models, namely: i) human
PBMCs obtained from MCI individuals and AD patients in mild and
moderate plus severe stages, associated to progressive cognitive impair-
ment, treated or not with Mem or AChE inhibitors, versus age-matched
controls; ii) PBMCs and cortical brain extracts obtained from 3xTg-AD
mice, a humanized animal model of AD exhibiting soluble Aβ in initial
stages and a later temporal profile of extracellular Aβ aggregates and in-
tracellular hyperphosphorylated tau (e.g.,[56,57]), versus wild-type
(WT) mice. Data add to the knowledge that oxidative stress plays a rel-
evant role in AD pathogenesis.
2. Materials and methods

2.1. Reagents

ECF reagentand anti-mouse and anti-rabbit IgG secondary antibod-
ies were from Amersham (UK). Polyvinylidenedifluoride (PVDF) mem-
brane, antibodies against glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) andHsp60were purchased fromMillipore Chemicon (Billerica,
MA, USA). BioRad protein assay reagent as well as iScript™cDNA synthe-
sis kit, SsoFast™EvaGreen®Supermixwere purchased from BioRad (Her-
cules, CA, USA). RNeasy® mini kit was from Qiagen (Valencia, CA, USA).
Antibodies against GADD153/CHOP, Bcl-2, CBP and PGC-1α (K-15)
were from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Antibody
against GRP78 and heparinized tubes for blood collection was from BD
Bioscience (San Jose, CA, USA). Antibodies against Bax, pro-caspase 3,
P(Thr980)PERK, PERK and CREB were from Cell Signalling(Danvers, MA,
USA). Antibodies against Bak, XBP-1, Nrf2, p(Ser40)Nrf2, SOD1, GCLc
and Lamin B1 were from Abcam (Cambridge, UK). Anti-mouse and
anti-rabbit IgG were obtained from Amersham (Buckinghamshire, UK).
Nuclear/cytosolic fractionation kit was obtained from BioVision (CA,
USA). ELISA kits for detection of cerebrospinal fluid (CSF) Aβ42, tau and
p-tau were purchased from Innotest/Innogenetics (Ghent, Belgium). Kit
for DNA isolation for ApoE genotyping was from Roche Diagnostics
GmbH (Manheim, Germany). Ficoll-Paque was obtained from GE
Healthcare (Buc, France). Fluorescent probes Fura-2-AM and 2′,7′-
dichlorodihydrofluorescein-diacetate (DCFH2-DA) were purchased
from Molecular Probes-Invitrogen (Eugene, OR, USA). Primers used for
RT-PCR were obtained from EuroFins MWG Operon (Ebersberg,
Germany). Glutamate, hydrogen peroxide (H2O2), thapsigargin, protease
cocktail inhibitor, RPMI 1640, antibodies against β-actin andα-tubulin as
well as other analytical grade reagents were obtained from Sigma
Chemical and Co. (St. Louis, MO, USA).

2.2. Participants

A total of 104 subjects participated in this study, including 20
healthy controls, 24 clinically confirmed MCI, 27 mild AD and 33 mod-
erate/severe AD patients from Portuguese families (Table 1). Patients
were recruited at the dementia outpatient clinics at Coimbra University
Hospital Center, in accordance with the Ethical Committee from this in-
stitution. Age-matched controls were volunteers, usually spouses or
friends of patients who were requested and agreed to participate in
the study. MCI and AD cases were subjected to clinical history, neuro-
logical examination, laboratorial evaluation and brain imaging (com-
puted tomography or nuclear magnetic resonance scan). Inclusion
criteria for AD were based on the 4th edition of The Diagnostic and Sta-
tistical Manual of Mental Disorders (DSM IV-TR) [2]. MCI criteria were
those proposed by the European Alzheimer's Disease Consortium [64].
Cognitive impairment was also quantified using the Mini Mental State
Evaluation (MMSE) [31]. Control subjects did not present evidence of
cognitive deterioration or cognitive complaint had a MMSE above cut-
off and their value in the Clinical Dementia Rating Scale (CDR) was
zero. The exclusion criterion for all groups was the presence of other
neurological, psychiatric or medical pathologies that could cause cogni-
tive impairment, or a history of alcohol or drug abuse. All participants
signed an informed consent before any study procedure. For AD
patients, informed consents from respective caregivers were also
obtained.

2.3. Quantification of soluble Aβ1–42, tau and p-tau in the CSF and genotyping
of ApoE allelic variants

Pre-analytical and analytical procedures were done in accordance
with the Alzheimer's Association guidelines for CSF biomarker determi-
nation [51]. Briefly, CSF samples were collected in sterile polypropylene
tubes, immediately centrifuged at 1800 ×g for 10 min at 4 °C, aliquoted



Table 1
Characterization of control, MCI and AD patients' sample population.

Groups Number of individuals
(n)

Gender Age
(years)

Education
(years)

Disease onset
(years)

Cognition
(MMSE Score)

Mem-treated
(%)

AChE inhibitors-treated
(%)

Male
(n)

Female
(n)

Control (CDR — 0) 20 8 12 68 ± 6.5
(55–79)

5.7 ± 2.1
(3–9)

– 28.90 ± 0.12
(23–30)

– –

MCI (CDR — 0.5) 24 12 12 71.8 ± 8.6
(48–93)

6.9 ± 4.6
(0–15)

67.3 ± 7.7
(46–78)

27.5 ± 0.63
(21–30)

4.2 16.7

Mild AD (CDR — 1) 27 11 16 72.5 ± 10.6
(53–92)

6.9 ± 4.0
(0–17)

68.2 ± 10.3
(51–89)

20.34 ± 0.89⁎⁎⁎,###

(10–28)
22.2 66.7

Moderate–Severe AD
(CDR — 2 and 3)

33 12 21 74.4 ± 10.2
(55–90)

5.6 ± 3.8
(0–15)

67.9 ± 10.1
(50–85)

10.9 ± 1.02⁎⁎⁎, ###,$$$

(0–22)
30.3 33.3

Data represent the mean ± SEM of age, education, disease-onset and cognitive impairment (analyzed throughMMSE, Mini Mental State Examination), as well as the percentage
(%) of individuals under medication with Mem or acetylcholinesterase (AChE) inhibitors (donepezil, rivastigmine and galantamine) relatively to the number (n) of individuals
per diagnostic group according to global staging (CDR — Clinical Dementia Rating); numbers in parentheses represent minimal and maximal values for each parameter. Statis-
tical significance: ⁎⁎⁎p b 0.001 compared to control individuals, ###p b 0.001 compared to MCI individuals, $$$p b 0.001 compared to mild individuals.
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into polypropylene tubes and stored at−80 °C until analysis. CSF Aβ42,
tau and p-tauweremeasured separately by sandwich ELISA kits, as pre-
viously described [5]. External quality control of the assays was per-
formed under the scope of the Alzheimer's Association Quality Control
Program for CSF Biomarkers [51]. Blood samples were also collected
from MCI and AD patients for ApoE genotyping. DNA was isolated
from whole EDTA-blood using a commercial kit and ApoE genotype
was determined by polymerase chain reaction-restriction fragment
length polymorphisms (PCR-RFLP) assay, as previously described [18].
2.4. Isolation and culture of peripheral blood mononuclear cells (PBMCs)

Peripheral whole blood from MCI, AD or healthy age-matched indi-
viduals and from 3-month-old 3xTg-AD versus WT mice was drawn in
heparinized tubes and mononuclear cells separated by gradient centri-
fugation in order to discard erythrocytes and granulocytes. Briefly,
10ml or 450–700 μl of human ormice blood, respectively, were careful-
ly layered onto Ficoll solution and tubes centrifuged at 1500 ×g for
20min at 18 °C in a swing-out rotor, without break. After centrifugation,
the ring containing mononuclear cells, mainly agranulocytes and more
particularly lymphocytes, was carefully removed from the interface
using a sterile Pasteur pipette and the harvested fraction diluted in
45 ml of sterilized phosphate saline buffer (PBS) containing (in mM):
137 NaCl, 2.7 KCl, 1.8 KH2PO4, 10 Na2HPO4·2H2O, pH 7.4. Cells were
pelleted by centrifugation at 530 ×g for 10 min at 18 °C, and
resuspended in RPMI 1640 without serum. Cells were immediately ex-
tracted for Western blot analysis or alternatively cultured for 1 day in
RPMI 1640 medium plus 10% (v/v) autologous serum in T25 culture
flasks at a concentration of 2 × 106 cells/ml in a humidified incubator
chamber with 95% air and 5% CO2 at 37 °C, for Ca2+i measurements or
ROS production experiments. Nuclear fractions were not prepared
from PBMCs due to the limitation in the amount of collected human
blood samples. To avoid multiple blood collections from each partici-
pant, the number of samples assayed in the different experimental pro-
tocols was lower than the total number of samples per group.
2.5. Animals

3xTg-AD and WT strain (C57BL6/129S) mice (a generous gift from
Dr. Frank Laferla, University of California, Irvine, USA) at young
(3 month-old) or old (12 or 15 month-old) age were bred and main-
tained at CNC-Faculty of Medicine, University of Coimbra, animal
house. Animals were housed under a constant temperature, humidity
and a 12 h light/dark cycle. All procedures using animals were in accor-
dancewith the approved animalwelfare guidelines and European legis-
lation (European directive 2010/63/EU) and Portuguese legislation
(“Decreto-Lei n°113/2013”).
2.6. Measurement of reactive oxygen species

Analysis of ROS in PBMCs was performed with the fluorescent
probe DCFH2-DA, which can be oxidized by hydroperoxides,
peroxynitrite (ONOO\\), hydroxyl radicals (•OH) or hypochlorous
acid, among other oxidants, and redox-active metals such as iron
[40]. PBMCs were washed in Na+ medium containing (in mM) 140
NaCl, 5 KCl, 1 CaCl2, 1 MgCl2, 10 glucose, 10 Hepes, pH 7.4, and
then incubated with the non-specific fluorescent probe DCFH2-DA
(20 μM) in Na+ medium for 30 min, at 37 °C. After a washing step,
ROS production wasmeasured (0.5 × 106 cells per experimental con-
dition) for 5 min (basal values) and for further 30 min after adding
1 mM H2O2, 1 mM glutamate or 2.5 μM thapsigargin by using a mi-
croplate reader Spectrofluorometer Gemini EM (Molecular Devices,
USA) (480 nm excitation, 550 nm emission). In order to evaluate
the contribution of ER Ca2+ depletion and the role of ER homeostasis
in regulating ROS production, experiments with 2.5 μM thapsigargin
were performed in Na+ medium without Ca2+.

2.7. Intracellular free Ca2+ recording

PBMCs were washed in Na+ medium (described in previous sec-
tion) followed by spin down centrifugation and incubated with the
Fura-2/AM ratiometric fluorescent probe (10 μM) for 40 min at
37 °C. After a washing step, Fura-2 fluorescence was analyzed
(0.5 × 106 cells per experimental condition) using a Spectrofluorom-
eter Gemini EM (Molecular Devices, USA) microplate reader, at a
340/380 nm excitation and 510 nm emission wavelengths. Fura-2
fluorescence was recorded for 5 min (basal values) and for further
15 min after exposure to H2O2 (1 mM), glutamate (1 mM) or
thapsigargin (2.5 μM). All plotted values were normalized for base-
line values. In experiments with thapsigargin, Ca2+ was omitted
from Na+ medium.

2.8. Sample preparation and Western blotting

In the case of both human and mice PBMCs, total protein extracts
were obtained by resuspending cells in Ripa buffer, a strong lysis
buffer normally used to study cytosolic, mitochondrial and nuclei
proteins (http://docs.abcam.com/pdf/misc/abcam-protocols-book-
2010.pdf) containing 150mMNaCl, 50mM Tris, 5 mM EGTA, 1% Triton
X-100, 0.5% DOC, 0.1% SDS, supplementedwith 1mMDTT, 1mMPMSF,
25 mM NaF, 1 mM Na3VO4, 100 nM okadaic acid and 1 μg/ml protease
inhibitor cocktail (chymostatin, pepstatin A, leupeptin and antipain).
3xTg-AD and WT mice were sacrificed by cervical dislocation and
brain cortices were isolated and homogenized with a potter at
280 rpm in ice cold supplemented Ripa buffer for preparation of total
protein extracts. Homogenates were then centrifuged at 14,000 ×g for
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10 min at 4 °C in order to obtain protein total extract. Nuclear fractions
frommice cerebral cortices and cultured cerebral cortical cells were ob-
tained using theNuclear/Cytosolic fractionation kit. Protein contentwas
determined using the BioRad protein assay reagent. Samples were
treated with a denaturing buffer containing 50 mM Tris–HCl pH 6.8,
2% SDS, 5% glycerol, 100 mM DTT, 0.01% bromophenol blue, for 5 min,
at 95 °C. Equivalent amounts of protein were separated by electropho-
resis on a 6–15% SDS-PAGE gel and electroblotted onto PVDF mem-
branes. The membranes were further blocked with 5% fat-free milk
before incubation with the specific antibody against XBP-1 (1:1000),
Grp78 (1:1000), GADD153 (1:500), Bcl-2 (1:500), Bax (1:1000), Bak
(1:2500), pro-caspase 3 (1:1000), P(Thr980)PERK (1:1000), PERK
(1:1000), GCLc (1:1000), Nrf2 (1:1000), P(Ser40)Nrf2 (1:500), CBP
(1:200), CREB (1:1000), SOD1 (1:1000) or PGC-1α (1:500) overnight,
at 4 °C. Furthermore, β-actin (1:20,000) or GAPDH (1:500) was used
as a protein loading control. An anti-mouse IgG secondary antibody
(1:20,000), anti-rabbit (1:20,000) or anti-goat (1:3000) was used. Im-
munoreactive bands were visualized by alkaline phosphatase activity
after incubation for 5–10 min with ECF reagent on a BioRad Versa Doc
3000 Imaging System. Purity of nuclear extracts from mice cerebral
cortices samples were also evaluated by Western blotting using
antibodies against Lamin B1 (1:1000) specific for the nuclear
fraction, Hsp60 (1:1000) specific for the mitochondrial fraction and α-
tubulin (1:20,000) specific for the cytoplasmic fraction (data not
shown).
2.9. RNA extraction, reverse transcription and quantitative real time PCR

Total RNAs were extracted using the Qiagen RNeasy mini kit, as de-
scribed by the manufacturer and quantified with a spectrophotometer
(NanoDrop 2000, from ThermoScientific). Reverse transcription was
performed on each RNA sample (1 μg) using the cDNA synthesis kit in
a final reaction volume of 20 μl, according to themanufacturer's instruc-
tions. All specific oligonucleotides were designed using the Primer3 and
BLAST software. Gene specific primers used for real time PCR reactions
are SOD1: forward 5′-CACTTCGAGCAGAAGGCAAG-3′ and reverse 5′-
CCCCATACTGATGGACGTGG-3′; GCLc: forward 5′-ATTCCGCTGTCCAA
GGTTGA-3′ and reverse 5′-AACATCCCCTGCAAGACAGC-3′; HO 1: for-
ward 5′-TGCTAGCCTGGTGCAAGATAC-3′ and reverse 5′-TGTCTGGGAT
GAGCTAGTGC-3′; Prdx 1: forward 5′-TATCAGATCCCAAGCGCACC-3′
and reverse 5′-AAGGCCCCTGAAAGAGATACC-3′; actin: forward 5′-
GGA GAC GGG GTC ACC CAC AC-3′ and reverse 5′-AGC CTC AGG GCA
TCG GAA CC-3′. Quantitative RT-PCR was performed with 10 ng of the
cDNA, 300 nM of each primer, and SsoFast™ EvaGreen® Supermix.
PCR cycleswere proceeded as follows: Taq activation (30 s, 95 °C), dena-
turation (5 s, 95 °C), and annealing and extension (5 s, 57 °C) using the
BioRad CFX 96 Real-time system, C1000 Thermal cycler. The melting-
curve analysis showed the specificity of the amplifications. Threshold
cycle, which inversely correlates with the target mRNA level, was mea-
sured as the cycle number at which the reporter fluorescent emission
appears above the background threshold. The relative mRNA levels
were estimated using the Bio-Rad CFX manager 2.1 software using
actin as a reference gene.
2.10. Statistical analysis

Datawere analyzed by usingGraphPad Prism5 (GraphPad Software,
SanDiego, CA, USA) software andwere expressed asmean±SEMof the
number of experiments indicated in the figure legends. Comparisons
among multiple groups were performed by one-way analysis of vari-
ance (ANOVA) followed by the Dunnett's post-hoc test. Unpaired two-
tailed Student's t-test was also performed for comparison between
two Gaussian populations, as described in the figure legends. Signifi-
cance was defined as p b 0.05.
3. Results

3.1. Clinical and biochemical characterization of human subjects

The characteristics of the sample, by diagnostic group, are summa-
rized in Table 1. Controls, MCI, mild andmoderate to severe AD patients
were similar in gender, age and educational level. A significant differ-
ence in the MMSE was observed between patients' groups (p b 0.001).
The percentage of patients medicated with Mem, an uncompetitive an-
tagonist of N-methyl-D-aspartate receptors (NMDARs), or AChE inhibi-
tors (donepezil, rivastigmine and galantamine) are also indicated in
Table 1. Data show that Mem was predominantly prescribed in AD
cases (mild and moderate–severe AD), whereas AChE inhibitors were
similarly prescribed in MCI and moderate–severe AD patients, and
mainly prescribed to mild AD patients. Patients were also medicated
with psychopharmaceuticals (67% of MCI individuals, 89% and 100% of
mild and moderate–severe AD patients, respectively), cholesterol-
lowering drugs (29.2% of MCI individuals, 3.7% and 21.2% of mild and
moderate–severe AD patients, respectively) and anti-coagulating
drugs (approximately 20% in all groups) (data not shown).

As depicted in Table 2, levels of Aβ1–42 in the CSF are significantly de-
creased betweenMCI andmild (p b 0.05) ormoderate/severe (p b 0.01)
patients and tend to decrease with disease progression. Interestingly,
AD patients could be distinguished fromMCIs by detecting lower levels
of Aβ1–42 and higher t-tau and p-tau levels in the CSF, when compared
to the reference values. Interestingly, increased total tau and p-tau
were already detected in MCI individuals when compared with refer-
ence values. Moreover, ApoE genotype was positive (about 50%) both
in MCI and AD patients.

3.2. ROS production in PBMCs from MCI and AD patients

Considering the relevance of oxidative stress in AD, production of
ROSwas evaluated in PBMCs obtained fromMCI subjects or AD patients
with different degrees of cognitive impairment (mild andmoderate–se-
vere stages, as depicted in Table 1) versus age-matched control individ-
uals (Fig. 1). Measurements were performed under basal conditions or
after incubation with H2O2, a stable and diffusible ROS, or high gluta-
mate concentration, which inhibits cysteine uptake leading to amarked
decrease in cellular GSH levels [62], both acting as oxidative stress in-
ducers. Thapsigargin, a selective non-competitive inhibitor of ER Ca2+

ATPase that impairs Ca2+ homeostasis in this compartment [69] was
also used. Detection of basal ROS production was significantly higher
in MCI PBMCs, compared to controls (Fig. 1A, B), but no significant
changes were observed in peripheral cells obtained from AD patients.
Furthermore, exposure of PBMCs to H2O2 (Fig. 1C, D, E) or glutamate
(Fig. 1F, G, H) induced a significant increase in ROS production in mild
AD patient's PBMCs (p b 0.05), suggesting increased susceptibility to ox-
idative stress in early AD patients presenting mild symptoms. Exposure
of MCI PBMCs to thapsigargin, which depletes ER Ca2+ levels, signifi-
cantly increased ROS levels (p b 0.05) (Fig. 1I, J, K), implicating early
ROS production possibly associated with ER dysfunction. No significant
differences in ROS generation were observed following exposure to
H2O2, glutamate or thapsigargin in cells from moderate–severe AD pa-
tients. Furthermore, no protective effects were observed in MCI or AD
patients treated with Mem or AChE inhibitors (donepezil, rivastigmine
and galantamine) (Fig. 1B, E, H, K). Additionally, no significant differ-
ences were observed between PBMCs obtained from men or women
(data not shown).

3.3. Deregulation of Ca2+i in PBMCs from MCI and AD patients

Taking into account the close relationship between ROS generation
and Ca2+ rise in ADand that deregulated intracellular Ca2+homeostasis
has been described in brain [24] and peripheral blood cells [22] fromAD
patients, we evaluated free Ca2+i levels in PBMCs from age-matched



Table 2
Analysis of CSF biomarkers in MCI and AD patients.

MCI Mild AD Moderate/severe AD Laboratory reference values

Aβ1–42 (pg/mL) 634.8 ± 88.3 (n = 12) 415.5 ± 40.4 (n = 13)* 303.2 ± 38.5 (n = 7)** N542
t-Tau (pg/mL) 353.0 ± 65.6 (n = 12) 564.8 ± 64.9 (n = 13) 453.0 ± 118.9 (n = 7) b212
p-Tau (pg/mL) 46.5 ± 7.2 (n = 12) 68.2 ± 5.4 (n = 13) 56.8 ± 9.6 (n = 7) b32
Biomarkers profile 1.2 ± 0.2 0.49 ± 0.09 0.50 ± 0.7 N1
ApoE (%ε4) 48% (n = 23) 52% (n = 50) –

Data represent themean± SEM of Aβ1–42, tau and phosphorylated-tau (p-tau) levels in CSF fromMCI and AD patients (n= 12 formild AD and n= 6 formoderate–severe AD). The bio-
markers profile is calculated through the formula Aβ1–42/(240+ 1.18*tau), considered typical of AD if b1. The ApoE genotypewas also evaluated for MCI and AD patients (n= 23 forMCI
and n = 50 for mild and moderate/severe AD). Statistical significance: *p b 0.05 and **p b 0.01 compared to MCI patients (Dunnett's post-hoc test).
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controls, MCI and AD patients in basal conditions and following stimu-
lation with the oxidative stress inducers, H2O2 and glutamate, or ER
Ca2+ depletion with thapsigargin (Fig. 2). Basal free Ca2+i levels were
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shown to be significantly higher in PBMCs obtained from mild AD pa-
tients (Fig. 2A, B), suggesting a deregulation of Ca2+i homeostasis in
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Fig. 2. Cytosolic and ER calcium levels in PBMCs of control individuals, MCI andADpatients. Levels of Ca2+ in the cytosol and in ER storeswere evaluated bymonitoring the fluorescence of
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dividuals (Dunnett's post-hoc test) and tp b 0.05 versus control (Student's t-test).
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caused an increase in free Ca2+i in all groups tested (Fig. 2C–H). How-
ever, the response was significantly lower in MCI (p b 0.05, Student's
t-test), when compared to age-matched control human cells (Fig. 2D,
E and G, H, respectively following H2O2 or glutamate exposure), rein-
forcing an inherent deficit in the regulation of Ca2+i. In order to evaluate
the contribution of ER, PBMCs were also exposed to thapsigargin. In the
presence of this classical disruptor of ER Ca2+ homeostasis and in the
absence of external Ca2+, the levels of free Ca2+i significantly decreased
in both MCI and mild AD PBMCs (p b 0.01), suggesting a decreased ER
Ca2+ content in these cells (Fig. 2I, J, K). In contrast, no significant
changes in free Ca2+i levels were observed in PBMCs obtained from
moderate–severe AD patients, as compared with controls. Moreover,
no differences were observed in PBMCs obtained from Mem- or AChE
inhibitors-treated and non-treated patients (Fig. 2B, E, H, K) or between
genders (data not shown).

3.4. Activation of ER stress response in human PBMCs and 3xTg-AD mice
brain cortex

Activation of ER stress sensors and downstream signaling pathways
is a cellular response triggered in an attempt to restore ER homeostasis
in cells submitted to several insults. Considering the large decrease in ER
Ca2+content in MCI and mild PBMCs (Fig. 2I, J, K), protein levels of ER
stress markers were evaluated in PBMCs obtained from control, MCI
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and AD subjects. In particular, levels of GRP78, an ERmolecular chaper-
one, XBP-1, a transcription factor activated downstream of the IRE-1α
ER stress sensor and a trigger for GRP78 gene expression, and
GADD153/CHOP, a pro-apoptotic transcription factor which acts
through downregulation of Bcl-2 and perturbation of redox status,
were analyzed [52] (Fig. 3).

Significant changes in the levels of ER stress markers were found in
peripheral cells obtained during pre-clinical or early stages of the dis-
ease. Indeed, we observed enhanced GRP78 and XBP1 levels. For
GRP78, the trend increase observed in MCI individuals became statisti-
cally significant in mild AD patients (Fig. 3A, B; p b 0.01 by Student's
t-test). The levels of XBP1, which is known to up-regulate GRP78,
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Fig. 3. ER stress markers in PBMCs of controls, MCI and AD patients. Levels of GRP78 (A, B), X
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were significantly increased in PBMCs derived from MCI individuals,
and remained high during disease progression (Fig. 3C, D; p b 0.05 by
Student's t-test), indicating ER stress. These data are concordant with
the depletion of ER Ca2+ stores, a well-known trigger of ER stress, in
MCI and mild AD PBMCs.

In order to ascertain activation of ER stress in AD brain, levels of
GRP78 and XBP-1 were also analyzed in cortical samples from 3xTg-
AD mice brain at 3 and 12 months of age, in comparison with age-
matched WT mice (Fig. 4). Since 3xTg-AD females were reported to
exhibit different susceptibilities linked to differential expression of sex
steroid hormones [12,35], we evaluated the levels of ER stress markers
in the brain cortex of 3xTg-AD males and females. Results indicate
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that alterations in these proteins occur in an age- and gender-
dependent manner in this AD model. In fact, the levels of the molecular
chaperone GRP78 were significantly increased at 12 months of age in
3xTg-AD males, compared to age-matched WT (Fig. 4A). Conversely,
in 3xTg-AD females, increased GRP78 levels, as compared to WT mice,
were detected in younger animals, at 3 months of age (Fig. 4B). Regard-
ing XBP-1 levels, results were similar to those obtained for GRP78: in
3xTg-AD mice females XBP-1 levels tend to increase at 3 months of
age (although not significantly), whereas inmales a significant increase
was observed at 12 months of age (Fig. 4C, D). These results suggest a
gender-dependent activation of ER stress pathways in the brain cortex
of 3xTg-AD mice.

In contrast with GRP78 and XBP-1 ER stress markers, the levels of ac-
tive p(Thr980)PERK [p(Thr980)PERK/PERK ratio] detected in the cerebral
cortex of 3-month-old 3xTg-AD andWTmicemaleswere not statistically
significant (Supplementary Fig. 1S). Similarly, GADD153/CHOP, a tran-
scription factor that acts as an important mediator of ER stress-induced
cell death, was not upregulated in the peripheral human model, in
PBMCs, along the progression of the disease (Fig. 3E, F) or in the cerebral
cortex of 3xTg-ADmales and females, at 3 and 12 months of age (Fig. 4E,
F). Concordantly, the levels of the pro-apoptotic proteins Bax, Bak and
pro-caspase 3, and also the levels of the anti-apoptotic protein Bcl-2,
and thus the Bcl-2/Bax ratio, were not significantly changed in PBMCs
from MCI and AD patients in comparison with age-matched controls
(Supplementary Fig. 2S), largely suggesting that apoptotic cell death
pathways are not activated in PBMCs during disease progression.

The above results indicate that ER stress occurs in PBMCs isolated
from MCI individuals or mild AD patients, which involves upregulation
of the XBP-1 stress sensor and the downstream GRP78 chaperone, two
markers of UPR activation, but does not implicate ER stress-induced ap-
optotic cell death pathway triggered by theGAD153/CHOP transcription
factor. In a similar way, in 3xTg-ADmice brain cortex, elevated levels of
XBP-1 and GRP78 evidence ER stress occurring in a GAD153/CHOP-
independent manner.
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3.5. Modified levels of transcription factor linked to antioxidant profile in
human and 3xTg-AD PBMCs and 3xTg-AD mice brain cortex

In order to investigate if the increase in ROS production in PBMCs
(Fig. 1) was due to modified antioxidant pathways, we further investi-
gated the levels of phosphorylated Nrf2 (p(Ser40)Nrf2), a transcription
factor that regulates a broad spectrumof protective genes, including the
superoxide dismutase 1 (SOD1) [60] and the glutamate-cysteine ligase
catalytic subunit (GCLc), the rate limiting enzyme for the synthesis of
glutathione [73]. Under basal conditions, Nrf2 is repressed by its binding
to Keap1 (Kelch ECH associating protein 1, a repressor protein that
binds to Nrf2 and promotes its degradation by the ubiquitin proteasome
pathway) in the cytosol [38]; following oxidative stress, Nrf2 is released
from Keap1 and phosphorylated at Ser40, allowing its translocation to
the nucleus, although phosphorylation of Nrf2 is not required for the
transcriptional activity of Nrf2 [8]; within the nucleus, Nrf2 binds to an-
tioxidant response element (ARE) and regulates transcriptional activity
of its target genes.

Importantly, a significant increase in p(Ser40)Nrf2 levels was ob-
served in MCI PBMCs (Fig. 5A, B; p b 0.05 by Student's t-test). The in-
crease in p(Ser40)Nrf2 was not accompanied by changes in other
transcription factors or co-regulators, namely peroxisome proliferator-
activated receptor gamma coactivator 1-alpha (PGC-1α), a transcrip-
tional co-activator that mediates antioxidant responses and plays a cen-
tral role in the regulation of cellular energy metabolism (e.g., [76]), and
two transcription factors linked to cell survival pathways, namely cAMP
response element-binding (CREB) and its co-activator CREB-binding
protein (CBP) (e.g., [21]) (Fig. 3S).

Unexpectedly, a significant decrease in SOD1 levels was detected in
MCI PBMCs (Fig. 6A, B; p b 0.05 by Student's t-test), while no significant
changes were observed on GCLc protein levels (Fig. 6C, D). These results
suggest a failure of the Nrf2 pathway in regulating its targets, leading to
decreased antioxidant defenses in PBMCs from MCI individuals, which
may underlie enhanced production of ROS. Peripheral cells isolated
from mild AD patients showed enhanced levels of SOD1, although not
statistically significant in comparison with controls. As previously de-
scribed for other parameters, treatment with Mem or AChE inhibitors
did not alter the levels of transcription factors (Fig. 5B; Fig. 3S B, D,
F) or the Nrf2-regulated targets SOD1 and GCLc (Fig. 6B, D).

The deregulation of antioxidant pathways was also studied in the
3xTg-AD mice model. Results depicted in Fig. 7A show a tendency for
an increase (p = 0.0544) in p(Ser40)Nrf2 levels in 3 month-old (pre-
symptomatic) 3xTg-AD PBMCs, when compared to age-matched WT
PBMCs, suggesting the activation of Nrf2, similarly as observed in MCI
PBMCs (Fig. 5). Notably, the volume of blood collected from each animal
was low (450–700 μL), yielding a limited number of PBMCs for these ex-
periments. Nrf2 levels were also evaluated in nuclear fractions from
brain cortical samples obtained from 3xTg-AD and WT mice, namely
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Fig. 5. Levels of phosphorylatedNrf2 in PBMCs of controls, MCI individuals and ADpatients. Leve
AChE or no medication (untreated) are represented with white, gray or black circles, respectiv
individuals per group. Statistical analysis: ⁎p b 0.05 significantly different when compared wit
young (3 month-old) and old (15 month-old) males and females. We
observed an increase in the levels of Nrf2 in nuclear fractions obtained
from the cerebral cortex of 3 month-old 3xTg-ADmales (Fig. 7B). Inter-
estingly, similar to data obtained in human PBMCs (Fig. 6), brain cortical
samples derived from young (pre-symptomatic) 3xTg-ADmales exhib-
ited decreased SOD1 and unaltered GCLc protein levels (Fig. 8A, B), sug-
gesting a probable failure in the activation of the Nrf2 pathway.
Moreover, in old 3xTg-AD mouse male brain cortex (at 15 months of
age), the decrease in nuclear levels of Nrf2 (Fig. 7C) was not accompa-
nied by alterations in GCLc or SOD1 protein levels (Fig. 8A, B). No signif-
icant alterations in nuclear Nrf2 (Fig. 7C), SOD1 or GCLc (Fig. 4S) levels
were observed in 3xTg-AD females cerebral cortex at 3 or 15 months of
age.

mRNA was further isolated from 3 month-old 3xTg-AD mouse
male brain cortex in order to evaluate the gene expression of different
Nrf2 targets, namely GCLc, SOD1, heme oxygenase (HO)-1 and
peroxiredoxin (Prdx)-1, and to verify the failure of Nrf2 to activate its
transcription targets. Interestingly, SOD1 and GCLc protein levels in
young 3xTg-AD males (Fig. 8A, B) correlated with reduced SOD1 and
unaltered GCLc mRNA levels (Fig. 9A, B). Moreover, a significant reduc-
tion in HO-1 mRNA and a trend for decreased Prdx-1 mRNA were de-
tected in 3xTg-AD males at 3 months of age (Fig. 9C, D).

Our results support that alterations observed in PBMCs of 3xTg-AD
micemay reflect changes observed in brain cortex. Moreover, increased
Nrf2 activation, resulting from increased nuclear Nrf2 levels in the cere-
bral cortex of young/pre-symptomatic (3 month-old) 3xTg-AD mice
males, may not be sufficient to activate the Nrf2 pathway through acti-
vation of transcription of its target genes, namely SOD1 or GCLc. Inter-
estingly, early alterations in oxidative defenses in the PBMCs and the
brain cortex of this ADmousemodel are apparently similar to those ob-
served in PBMCs from MCI patients.

4. Discussion

Investigation of cell injury in different stages of cognitive deteriora-
tion in AD peripheral human cells evidenced prodromal p(Ser40)Nrf2
upregulation, which correlated with heightened ROS production,
alongwith decreased SOD1 and, as observed in PBMCs from individuals
withMCI already showing increased tau and p-tau but normal Aβ1–42 in
the CSF. Furthermore, ER stress-mediated Ca2+ dyshomeostasis and ER-
associated ROS generation, in the absence of apoptotic activation, were
found in PBMCs obtained fromMCIs and mild AD patients, constituting
early events in AD. Interestingly, data obtained in human PBMCs were
similar to that obtained from pre-symptomatic 3xTg-AD mouse
PBMCs regarding p(Ser40)Nrf2 levels, which apparently correlated
with increased nuclear Nrf2 in the cerebral cortex; interestingly, this
was accompanied by decreased SOD1 and unaltered GCLc protein and
mRNA levels, as well as increased ER stress markers.
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Accordingly to the "amyloid cascade hypothesis", Aβ (particularly in
the oligomeric form) triggers several pathological mechanisms leading
to synaptic and neuronal dysfunction, which appear to underlie cogni-
tive deficits and dementia [7]. This hypothesis is supported, among
other evidences, by the discovery of an APP mutation that decreases
Aβ levels in vitro and protects against AD-associated cognitive decline
[39]. Previously, we demonstrated that NMDAR-mediated Ca2+i

dyshomeostasis is induced by Aβ oligomeric forms in cultured neurons
[17,25,26,30,67]. Furthermore, this peptide was shown to be an ER
stressor that activates theUPR andderegulates ER Ca2+ homeostasis, in-
creasing cytosolic Ca2+ levels, finally leading to apoptosis [17,29,37,67].
Interestingly, previous studies revealed increased cytosolic Ca2+ levels
in AD lymphocytes, when compared to control individuals [1]. In the
presentwork,we demonstrated that basal Ca2+i levels were significant-
ly higher in the initial stage of cognitive deficits (mild AD patients); in-
terestingly,MCI subjects andmild AD patientswere previously reported
to exhibit synaptic modifications [71]. Furthermore, in PBMCs fromMCI
individuals the increase in cytosolic Ca2+ correlated with decreased ER
Ca2+ levels, indicating a deregulation in ER Ca2+ buffering capacity, an
early event implicated in ER stress response [42]. In the presence of ox-
idant toxic stimuli (glutamate or H2O2), PBMCs from MCI individuals
showed a reduced Ca2+i response, indicating increased susceptibility
to Ca2+ deregulation following a stress insult. These results show that
during the initial stages of the disease, PBMCs exhibit significant alter-
ations in regulation of Ca2+i homeostasis by the ER. Interestingly, we
did not observe alterations in Ca2+ levels in PBMCs isolated from mod-
erate–severe AD patients, suggesting that alternative mechanisms may
occur in peripheral cells at later disease stages.

Changes in ER Ca2+ content in PBMCs isolated fromMCI subjects and
in the early stages of the disease were followed by enhanced levels of
GRP78 and XBP-1, valuable markers of ER stress previously found to
be up-regulated in AD brains [84,85]. Our results suggest that, in an
early stage of AD,GRP78detaches from the stress sensor IRE1α allowing
its dimerization and XBP1 splicing [58], which may then up-regulate
chaperones to cope with misfolded proteins. Prolonged ER stress can
trigger apoptotic cell death, which may occur through activation of
the transcription factor GADD153/CHOP [63,70]. However, we did not
find evidences for the involvement of GADD153/CHOP in peripheral
cell damage or in brain cortical samples from 3xTg-AD mice. In these
mice, results also suggest an age- and gender-dependent induction of
ER stress which occurs later in males, as suggested by increased
GRP78 and XBP-1 levels at 12 months of age, and earlier in females, as
demonstrated by the increase in GRP78 levels at 3 months of age.

Previous studies showed that lymphocytes from MCI subjects and
AD patients exhibited increased basal ROS levels, when compared
with lymphocytes obtained from age-matched control subjects [43,
53].Mórocz and colleagues (2002) also found oxidized purines in nucle-
ar DNA isolated fromAD lymphocytes and diminished repair capacity of
H2O2-induced oxidized purines [54]. Our results are in accordance with
these observations, since PBMCs from MCI individuals exhibited an in-
crease in ROS production under basal conditions. Importantly, this in-
crease was accompanied by enhanced Nrf2 (ROS-related transcription
factor) activation and decreased levels of SOD1 protein levels, although
Nrf2 is known to regulate SOD1 transcription, among several other tar-
gets;, suggesting an impairment of defensive oxidative stress pathways
activation. Furthermore, thapsigargin induced a significant rise in ROS
levels in MCI PBMCs suggesting that ER might also be an important
source of ROS under conditions of ER Ca2+ dyshomeostasis and de-
creased SOD1. Cumulating evidences suggest that ER stress induction
upon depletion of ER Ca2+ and generation of ROS are closely linked
events [46]. Indeed, Ca2+ released from ER leads to the generation of
ROS [30] and depletion of reduced glutathione (GSH), which in turn ac-
tivate the mitochondrial-mediated apoptotic cell death pathway in cul-
tured cortical neurons [29]. Results obtained in human PBMCs suggest
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that duringMCI, oxidative stress is related, at least in part, to deregulated
ER Ca2+ homeostasis and correlates with decreased antioxidant defenses
resulting from a probable impairment in Nrf2 pathway.

In vivo oxidative damage was shown to directly correlate with the
presence of Aβ deposits [75]. Similarly to our findings in human
PBMCs, we obtained evidences for deregulation of defensive oxidative
pathways in both PBMCs and brain of 3xTg-AD pre-symptomatic mice,
at 3 months of age, presenting intracellular Aβ accumulation [56].
Young 3xTg-AD mice males exhibited increased p(Ser40)Nrf2 levels in
PBMCs similarly to those observed inMCI PBMCs, and increased nuclear
Nrf2 levels in brain cortex, which occurred concomitantly with dimin-
ished SOD1 and HO-1 mRNA levels, largely suggesting an impairment
in the Nrf2 transcriptional activity. Our previous studies showed
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evidences for early oxidative stress in 3–5 month-old 3xTg-AD females
total brain homogenates, namely decreased levels of GSH and vitamin E,
increased activity of glutathione peroxidase and superoxide dismutase
and lipid peroxidation products [68]. However, in the cortex of 3xTg-
AD young females we did not observe alterations in SOD1, GCLc or nu-
clear Nrf2 levels. We previously demonstrated age-dependent differ-
ences between genders in 3xTg-AD mice regarding GluN2B subunit of
NMDARs and Src activation [56]. In humans, differences between gen-
ders in AD patients have been reported and the incidence of the disease
was described to be higher in post-menopausal women than in age-
matched men [9,32], but this is still questionable.

Our results are in accordance with the literature and differences ob-
served between males and females at the same age suggest gender-
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dependent mechanisms regulating antioxidant gene expression, which
may bemediated by differential activity of sex steroid hormones [12]. A
late (15 month-old) decrease in nuclear Nrf2 in the cerebral cortex of
3xTg-AD males, compared to WT mice, might be concordant with the
decrease in nuclearNrf2 levels in aged humanAD brains [66] suggesting
that Nrf2-mediated transcription is not induced at late AD stage.

In the present study increased Nrf2 activation determined by in-
creased p(Ser40)Nrf2 and enhanced nuclear Nrf2 levels was not associ-
ated with increased expression of Nrf2 targets. For instance, GCLc levels
were consistently unaffected in AD models, namely human PBMCs and
3xTg-AD mice cerebral cortex, suggesting that early features of oxida-
tive stress and ER stress in AD are unrelated withmodified GSH synthe-
sis. Data also support a decrease in expression of other Nrf2 targets
acting as antioxidants and/or detoxifying proteins, namely SOD1, HO-1
and Prdx-1, revealing a possible impairment in Nrf2 activity as a tran-
scription factor.

Importantly, our results support that changes detected in peripheral
cells may reflect mechanistic alterations that occur in the brain, as
depicted by the increase in p(Ser40)Nrf2 in PBMCs from prodromal
MCI individuals and pre-symptomatic/young 3xTg-AD mice, along
with increased nuclear Nrf2 in the cerebral cortex of 3 month-old
3xTg-ADmicemales.We previously demonstrated similarities between
human PBMCs and 3xTg-AD brain regarding BACE1 mRNA [48]. More-
over, a recent report demonstrated that in 3xTg-ADmice, the behavioral
deficits develop simultaneously with systemic autoimmune/inflamma-
tory disease, which in turn occurs before AD-like neuropathology, thus
supporting a causal link between changes in peripheral cells and aber-
rant behavior [47]. Similarly to that was observed in the 3xTg-AD
mice model, we can hypothesize that human PBMCs may reflect mech-
anistic alterations occurring in the brain and be used to identify new
markers of disease progression.

In human PBMCswe did not observe significant differences between
moderate plus severe AD patients and control individuals. Characteriza-
tion of our population shows that groups are similar in terms of gender,
age, ApoE genotype and educational level. AD patients could be distin-
guished fromMCIs by the presence of lower levels of Aβ1–42 and higher
t-tau and p-tau levels in the CSF. Interestingly, correlation analysis
showed R2 values of 0.803 or 0.947, respectively, for correlations be-
tween CSF Aβ levels and pNrf2 or ROS levels in human PBMCs, indicat-
ing that decreased CSF Aβ levels positively correlate with diminished
oxidative stress markers in human PBMCs. In fact, patients with lower
levels of CSF Aβ (late-stage AD patients) presented lower levels of ROS
andpNrf2 in PBMCs. Therefore, we hypothesize that unaltered oxidative
stress parameters observed in PBMCs frommoderate plus severe AD pa-
tients may be due to the fact that they are highly medicated, not only
with AD-associated compounds, but also with psychopharmaceuticals,
anti-cholesterol and anti-coagulation drugs, which may interfere with
the measured parameters. In fact, ROS production by peripheral cells
was shown to be inhibited by antipsychotic drugs such as risperidone
[13] or anti-cholesterol drugs, namely statins [81,82]. ER stress was also
shown to be affected by antipsychotic compounds [78]. Importantly, our
study failed to show significant effects of Mem or AChE inhibitors, the
most commonly prescribed molecules in AD pathology, in PBMCs,
which, however, cannot exclude their beneficial effects in the central
nervous system [61].

5. Conclusions

In conclusion, results obtained in this study provide evidence for an
early cell dysfunction possibly arising from impairment in Nrf2 tran-
scriptional activity and oxidative stress, along with ER stress-related
Ca2+ dyshomeostasis, as found in PBMCs fromhuman subjects at differ-
ent stages of cognitive impairment and from 3xTg-AD mice regarding
pNrf2. Moreover, data obtained using brain cortex from 3xTg-AD mice
appear to correlate with the results obtained in both 3xTg-AD mice
and human PBMCs, suggesting a concordance between the evidences
of oxidative and ER stress markers observed in AD mice brain and the
blood peripheral model of AD. These findings support that alterations
occurring in PBMCs during pre-clinical and initial stages of ADmight re-
flect brain modifications, possibly linked to synaptic dysfunction and
neuronal loss. Therefore, studies conducted in PBMCs might be useful
to identify possible targets for earlier detection and therapeutic inter-
vention in AD.
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