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Abstract  

Background Biomarker-based risk predictions in individual patients with MCI are highly relevant in 

light of care planning and future disease modifying drugs. We aimed to establish robust, prediction 

models in a multi-center, multi-cohort design. 

Methods We included 2611 patients with mild cognitive impairment (MCI) (age=70±8, 44%F) via the 

European Medical Information Framework for Alzheimer’s Disease (EMIF-AD, n=883), Alzheimer’s 

Disease Neuroimaging Initiative (ADNI, n=829), Amsterdam Dementia Cohort (ADC, n=666) and 

Swedish BioFINDER study (n=233). Primary end-point was clinical progression to dementia. We 

evaluated performance of our risk prediction models (demographic model, Hippocampal volume 

(HCV) model, cerebrospinal fluid (CSF) model) by evaluating them across cohorts, incorporating 

different measurement methods, determining prognostic performance, updating the models by re-

estimating parameters and evaluating calibration. Finally, we constructed a model combining markers 

for amyloid deposition (A), tauopathy (T) and neurodegeneration (N), in accordance with the AD 

research framework . 

Findings During 3±2 years follow up, 1007 (39%) MCI patients progressed to dementia. Both 

demographic (Harrell’s C=0·62[0·59-0·65]), HCV (Harrell’s C=0·67[0·62-0·72]), and CSF (Harrell’s 

C=0·72[0·68-0·74]) models had adequate prognostic performance across cohorts and were well 

calibrated. The newly constructed ATN model had highest performance (Harrell’s c=0·74[0·71-0·76]). 

As an example, for a female MCI patient (62yrs, MMSE=26) with abnormal biomarkers (Abeta =112, 

p-tau=35 (Elecsys values) and HCV= 6.2 (Freesurfer values), the probability of progression to 

dementia was 40%[33-48] in one year, 88%[82-94] in three years and 97%[94-99] in five years. 

Interpretation We generated risk models that are robust across cohorts, which adds to their clinical 

applicability. The models aid clinicians in the interpretation of CSF and HCV results in individual 

MCI patients and help prepare for a future of precision medicine in AD.  

Funding ZonMW-Memorabel (ABIDE; projectnr. 733050201) 
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Research in context 

Evidence before this study 

We searched PubMed without language restriction for articles on prognosis in MCI patients at an 

individual level based on biomarker evidence using the terms “([mild cognitive impairment] AND 

[prognosis] OR [prognostic factor] OR [prediction model])”. Specifically we focused on prognosis in 

MCI based on biomarker evidence, i.e. atrophy on magnetic resonance imaging (MRI) and amyloid 

beta (Abeta), total tau (t-tau) and phosphorylated tau (p-tau) in CSF. For this validation study, we took 

as a starting our previously constructed biomarker-based prognostic models that allow risk prediction 

on the individual level. However, these proof of principle models were based on a homogeneous, 

mono-center cohort and did not accommodate different cohorts and biomarker measurement methods. 

Moreove, prediction beyond three years was not reliable. 

Added value of this study 

In the current study of 2611 patients with MCI from mono- and multi center cohorts in Europe and 

America, we validated and updated, according to the TRIPOD guidelines, multivariable (biomarker-

based) models for the prediction of dementia. We showed that the models had good generalizability 

and were well calibrated up to more than five years of follow-up. Moreover, the models accommodate 

different biomarker measurement methods. In addition, we constructed a model combining measures 

of amyloid (A), tau (T), and neurodegeneration (N) to provide predictions in accordance with the most 

recent research guidelines for AD.   

Implications of all the available evidence 

We have shown the generalizability and robustness of the predictions and the models are made freely 

available for academic use by the authors upon request. The models allow clinicians to estimate – for 

any given combination of biomarker results – the probability of progression to dementia within a 

given period of time. For example, for a female MCI patient (age=62, MMSE=26) without knowledge 

of biomarker results the progression probabilities to dementia are 11% [10-12] in one year, 39% [36-

42] in three years and 57% [52-61] in five years. When both MRI and CSF would be available and 
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abnormal (Abeta =112, p-tau=35 (CSF measured with Elecsys) and HCV= 6.2 (calculated with 

Freesurfer software)), the progression probabilities change to 40%[33-48] at one year, 88%[82-94] at 

three years and 97%[94-99] at five years. On the other end of the spectrum, a MCI patient (male, 

age=62, MMSE=29) without knowledge of biomarker results, has progression probabilities to 

dementia of 7%[6-8] in one year, 26%[23-29] in three years and 40% [44-35] in five years. With 

normal biomarkers (Abeta=1264, p-tau=12 (Elecsys) and HCV=9.8 (Freesurfer)) this patient would 

have progression probabilities of  in 1%[1-2] one year, 5%[4-7] in three years and 8%[6-11] in five 

years. The outcomes of this study facilitate a more timely and accurate diagnosis which is of high 

importance at the individual level even in the absence of specific therapies, as this is the starting point 

to plan and organize care.  
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Background 

Patients with mild cognitive impairment (MCI) have an increased risk of progressing to dementia, 

most often due to Alzheimer’s Disease (AD).1 Roughly half of MCI patients develop dementia in the 

course of three years.2 The other half remains stable or reverts to normal levels of cognition. As a 

result, patients live with uncertainty for a long time. In a former study on the communication of 

diagnosis, patients indicated they preferred more information on the future course of their disease.3 

Diagnostic tests, such as magnetic resonance imaging (MRI) measures and/or biomarkers in 

cerebrospinal fluid (CSF), could help to establish a more accurate prognosis.4-7  

Practice guidelines for MCI from the American Academy of Neurology (AAN) acknowledge that 

biomarker research in AD is a rapidly moving field and that biomarker evidence in MCI may be 

particularly important for prognosis.8 At the same time, these guidelines state that biomarkers are not 

yet ready for clinical implementation. This is also confirmed by the Geneva Roadmap.9 Although there 

is a wealth of literature showing the prognostic value of CSF and MRI biomarkers on a group level5-7, 

these studies do not allow direct translation to the individual. For example, the prognostic value of 

biomarkers may be influenced by patient characteristics such as age, sex and cognitive status. To 

extract maximal information from each biomarker, the results should be interpreted in the context of 

these characteristics. However, these characteristics are often omitted in prognostic research. 

Furthermore, recommendations on how to handle conflicting and borderline results are lacking.9 In 

this context, the novel National Institute on Aging and Alzheimer’s Association (NIA-AA) research 

framework that defines AD as a biological construct is of great interest. The research framework 

proposes to use biomarkers for amyloid (A), tau (T), and neurodegeneration (N) to classify patients. 

For MCI, it is unknown how the use of this framework informs predictions.10  

In a previous study we constructed, as a proof of principle, biomarker-based prognostic models that 

allow risk prediction on the individual level.4 These models, which were based on a homogeneous, 

mono-center cohort, provide probabilities of progression to (AD)dementia in the course of one or three 

years of follow-up for any given value of each biomarker. To successfully enter clinical practice 

however, generalizability has to be demonstrated by extensive external validation.11 A prerequisite for 
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generalizability is that the models are able to accommodate different biomarker measurement methods 

and have value for different cohorts, beyond the ones they were initially developed in.9 Taking our 

initially developed risk prediction models as a starting point, the aim of this study was to establish 

robust prediction models in a multi-center, multi-cohort design. In addition, we constructed an ATN-

model allowing the use of this framework to inform predictions.  
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Methods 

Study design and participants  

MCI patients were included from mono- and multi-center cohorts in Europe and America;  the 

Amsterdam Dementia Cohort (ADC12, n=666), the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI13, n=829), the Biomarkers For Identifying Neurodegenerative Disorders Early and Reliably 

Study (BioFINDER14, n=233) and the collaborative cohorts of the European Medical Information 

Framework  for AD (EMIF-AD, n=883) composed of the following (multi)center studies: 

DESCRIPA15, AddNeuroMed16, German Dementia Competence Network (DCN17),  IMAP 18, 

European Alzheimer’s Disease Consortium (EADC)-PET19, Brescia 20, Coimbra21, Kuopio22 and 

Lisbon23. In Table 1 the cohort characteristics are summarized. The cohort characteristics of the 

separate EMIF cohorts are shown in Supplemental Table 1 (page 2-3).  

Inclusion criteria of the present study were a baseline diagnosis of MCI, at least 6 months of follow-up 

and availability of a baseline MMSE and MRI or CSF biomarkers. All participant gave written 

informed consent and institutional review boards approved the study. This study is reported in 

accordance with the Transparent Reporting of a multivariable prediction model for Individual 

Prognosis Or Diagnosis (TRIPOD) guideline.24  

Original prediction models 

The original prediction models were constructed using Cox proportional hazards modelling in the 

Amsterdam Dementia Cohort.4  In the current study, we validated the following previously published 

models: Demographic only model, HCV model and CSF model.4 Variables included in the models and 

corresponding estimates are shown in Supplemental table 2 (page 4). In short, the demographic model 

included age, sex and MMSE, the HCV model included HCV (cm3), age and MMSE, and the CSF 

model included Abeta (1-42), total tau, MMSE and an interaction between Abeta and total tau. As 

whole brain volume was not available in one cohort (EMIF), we were unable to assess the 

performance of a model combining CSF and MRI features (i.e. combined model). In the original 

paper, the prognostic models showed moderate to good discrimination (Harrell’s C’s demographic 

model=0.59 [0.54-0.64], HCV model=0·73 [0·66-0·80] and CSF model=0·67 [0·67-0·81]). External 
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validation in ADNI-2 showed robustness of all models (Harrell’s C’s demographic model=0·67 [0·60-

0·74], HCV model=0·73 [0·66-0·80] and CSF model=0·74 [0·67-0·81]).4 

Part of the ANDI sample was used in the original paper, therefore we excluded these patients from the 

validation analyses, but included them in the model update (Figure 1).   

Predictors 

The following baseline predictors were available in all cohorts: patient characteristics (age, sex), Mini-

Mental State Examination (MMSE) score, CSF biomarkers (Abeta, total tau (t-tau), phosphorylated 

tau (p-tau)) and Hippocampal Volume (HCV). In supplemental Figure 1 (page 5) the distributions of 

these predictors are shown across the different cohorts.  

As absolute values of both CSF concentrations and volumetric MRI measures varied across methods, 

we bridged CSF and volumetric MRI data where possible. A detailed description of this bridging 

analysis is provided in the supplement (Supplemental text 1 (page 6) and Supplemental Figure 2 (page 

7)).   

Outcome 

Clinical progression to any type of dementia was used as primary outcome. In a secondary analysis, 

we validated all models with AD-dementia as outcome (Supplemental Figure 3 (page 8) and 

Supplemental Table 3 (page 9)). The ADC and BioFINDER are memory clinic-based cohorts and 

patients were re-evaluated on a yearly basis (EMIF-AD substudy follow-up is reported in 

Supplemental Table 1 (page 2-3)). ADNI is a research cohort and diagnosis is evaluated on a 3 to 12-

month interval.  

Statistical analysis 

We took the following four steps to validate and update our biomarker-based prediction models. First, 

model performances of the originally developed models were assessed in all cohorts with Harrell’s 

concordance statistic. Second, we updated the models by 1) re-estimating parameters with and without 

center specific effects, in order to evaluate whether we could safely omit the adjustment for center 

which would increase generalizability and 2) replacing t-tau by p-tau in the CSF model according to 
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NIA-AA criteria. Third, we estimated a model including both amyloid, p-tau and HCV in accordance 

with the recently proposed ATN framework10. Lastly, we assessed calibration (concordance predicted 

with observed outcome) of the models by superimposing observed and expected survival predicted by 

the models. A detailed description of these steps can be found in the supplement (Supplemental text 2, 

page 10-12). Analyses were performed in STATA SE 14 and were based on complete cases and 

therefore the number of patients varies across models (Figure 1).  

Role of the funding source 

Funders of this study had no involvement in study design, data collection, data analysis, data 

interpretation, or writing of the report.  
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Results 

Participants 

We included 2611 subjects of which 1007 (39%) subjects progressed to dementia. Mean age was 

70±8, mean MMSE was 27±2 and 44% (n=1153) were female.  

Model Performance  

Figure 2 shows the pooled model performance for each model. The original model performances are 

shown in grey. For the demographics only (0·62 [0·59-0·65]), HCV model (0·67 [0·62-0·72]) and the 

CSF model (0·67 [0·64-0·71] the pooled Harrell’s C’s are similar to those found in the original study. 

The results for AD-dementia as outcome are shown in Supplemental figure 3 (page 8). For AD-

dementia as outcome, the pooled Harrell’s C of the CSF model is lower than in the original study, 

indicating possible misfit (0·69 [0·65-0·72]).  

Model update 

Re-estimating the parameters did not increase model fit for the demographics only and HCV model, 

both with and without center specific effects (Table 3). For the CSF model, re-estimating the 

parameters increased model fit. In none of the models, inclusion of center specific effects improved 

the models relative to the models without center specific effects (Table 3). Results from an additional 

set of analyses further supported this finding, as we found that center specific effects were not 

confounded by measurement methods for MRI and CSF (supplementary data). Therefore, the models 

without center specific effects are favored over a model with center specific effects, as this increases 

generalizability. Replacing t-tau by p-tau in the CSF model did not affect model performance (Table 

3).  

ATN model 

In Table 4 we present a novel ATN model (validation procedure is shown in Supplemental table 4 

(page 13), results for AD-dementia are shown in Supplemental table 5 (page 14)).  Main effects of 

Abeta, p-tau, HCV, age and MMSE retained (p<0.10). Moreover, interaction effects between Abeta 

and p-tau, Abeta and age, and p-tau and MMSE were included (p<0.10).  The interactions indicate that 
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the prognostic value of Abeta was stronger in younger patients. The prognostic value of p-tau was 

most pronounced in patients with higher (normal) Abeta values and lower (abnormal) MMSE values. 

Harrell’s C-statistic was  0·74 [0·71-0·76]. 

Calibration 

Figure 3 shows the superimposed expected and observed survival curves for different risk groups. In 

general, for all models, the lines of the observed and expected survival appear to be similar, indicating 

good calibration. For the HCV model, visual inspection suggests a degree of misfit for very long term 

predictions (>5 years), as the model tends to overestimate survival in the good group and 

underestimate survival in the poor group. Of note, all models are well calibrated up to five years of 

follow up.  

Clinical use 

As all models are well calibrated up to five years of follow-up, we now updated the models to provide 

five year risk estimates in addition to the one and three year risk estimates provided in the original 

paper. A spreadsheet calculator can be provided by the authors on request. This calculator allows the 

user to select which platform was used for CSF analysis (Innotest, Luminex or Elecsys) and which 

method was used to calculate hippocampal volume (FSL FIRST or Freesurfer). After selecting the 

appropriate methods for CSF and MRI, clinicians can easily fill in patient specific values.  

For example, for a female MCI patient (age=62, MMSE=26) without knowledge of biomarker results 

the progression probabilities to dementia are 11% [10-12] in one year, 39% [36-42] in three years and 

57% [52-61] in five years. When both MRI and CSF would be available, the progression probabilities 

change to 40%[33-48] at one year, 88%[82-94] at three years and 97%[94-99] at five years  if 

abnormal biomarkers are abnormal (Abeta =112, p-tau=35 (CSF measured with Elecsys) and HCV= 

6.2 (calculated with Freesurfer software).  

On the other end of the spectrum, a male MCI patient (age=62, MMSE=29) without knowledge of 

biomarker results, has progression probabilities to dementia of 7%[6-8] in one year, 26%[23-29] in 

three years and 40% [44-35] in five years. With normal biomarkers (Abeta=1264, p-tau=12 (Elecsys) 
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and HCV=9.8 (Freesurfer)) this patient would have progression probabilities of  in 1%[1-2] one year, 

5%[4-7] in three years and 8%[6-11] in five years. Particularly this strong negative predictive value of 

these biomarker results (i.e. reassure when normal) may have immediate clinical relevance.  
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Discussion 

We have constructed and validated biomarker-based models, including an ATN-model, to provide 

predictions for dementia in individual MCI patients. We showed that the models had strong external 

validity, being generalizable across continents and memory clinic cohorts. Moreover, the models 

accommodate different assays which further increases their generalizability. Depending on the 

preferences and needs of the clinicians and patients, the models can be used to extract individually 

tailored prognostic information from the tests which have been performed in the diagnostic set-up. By 

doing so, we take the first crucial steps on the road towards a precision medicine approach.  

Our study has important clinical implications. Patients and caregivers become increasingly assertive in 

their need for (prognostic) information. In clinical practice however, risk communication in MCI 

patients is only sparsely observed and if communicated, these are mostly group averages; “being an 

MCI patient, you have a fifty-fifty percent risk of progression to dementia”. With biomarker results 

available, this fifty-fifty situation for most patients is not true however. As with abnormal biomarkers, 

the risk of progression may be higher, while with normal biomarkers this risk can be (far) lower. With 

our validated, biomarker-based prediction models, a prognosis for an individual patient can be 

estimated in the context of their own characteristics, showing that precision medicine for AD may be 

on the horizon. The models are easy to use and a calculator (simple excel sheet) for academic use can 

be provided by the authors upon request. To further facilitate clinical use, we incorporated the models 

in an easy to use online tool (ADappt; https://www.alzheimercentrum.nl/professionals/adappt-contact/ 

).25  

However, there are also arguments against the disclosure of risk in clinical practice. A recent review 

on the disclosure of amyloid PET results in pre-dementia patients showed that these arguments are to a 

large extent theoretical in nature and relate mostly to the principle of non-maleficence (i.e. do no 

harm).26 Empirical evidence for this is largely lacking and the effect on psychological harm is not 

known. In a previous ABIDE study, patients and caregivers expressed their need for risk 

communication in early phases of AD and anxiety or uncertainty did not increase after disclosure of 

https://www.alzheimercentrum.nl/professionals/adappt-contact/
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amyloid PET.3, 27 This suggests that it is conceivable that models such as developed in this manuscript 

could be used in clinical practice. Nonetheless before this type of model could be implemented in 

daily practice, there are some important next steps to take, particularly to determine clinical utility. In 

the current study, we used retrospective data to construct the models. As a first next step, the models 

should be evaluated prospectively, ideally in a phase 3 RCT design. This RCT should provide 

important answers on clinical utility of the models, particularly if their use has impact on a patients’ 

understanding, emotional wellbeing, and behaviour (e.g. lifestyle changes).  

In parallel, studies should focus on the optimal way to disclose risks to non-demented individuals, and 

it is conceivable that clinicians should receive training on how best to disclose this type of 

probabilistic information. Moreover, before initiating biomarker testing, it is of utmost importance that 

realistic expectations are set with regard to what kind of results can be anticipated. One could also 

imagine a different scenario, where the risk prediction models would actually be used before initiating 

biomarker testing. By filling in hypothetical biomarker results and comparing these to the results of 

the demographic only model, the clinician can evaluate whether or not these results would add 

prognostic value. The clinician could also engage the patient and caregiver in this discussion on 

different biomarker scenario’s and potential outcomes. In this light, the models could serve as a 

decision support tool and could even enhance shared decision making.  

We included multiple mono- and multicenter cohorts, both from Europe and the USA. Although we 

did not find heterogeneity in the baseline hazard and baseline survivor function (data not shown), 

differences inevitably exist between cohorts. For that reason, we thoroughly tested for center-effects. 

We found that adding center-effects did not improve the performance of the models, nor did it result in 

a difference in progression probabilities on an individual level (data not shown). According to the 

principle of parsimony, a model without center specific effects is preferable, as this allows the 

clinician to use the model without further adjusting the model to their own memory clinic. Moreover, 

this indicates that our models are also applicable for MCI patients in other memory clinics which were 

not included in the development or validation phase of our study. Secondly, it appeared that in the 

original CSF model, the parameters of Abeta and t-tau were overestimated, leading to less optimal 
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model performance in other cohorts. Re-estimating the parameters resulted in an increase in model 

performance. As a measure of amyloid, we used CSF concentrations rather than amyloid PET. 

Although of interest, amyloid PET is currently less often used in clinical practice, and is usually 

evaluated in a dichotomous fashion, while in the current models we include all biomarkers as 

continuous measures, with the objective to make it readily available for clinicians. We have developed 

amyloid PET based models in an earlier study however, and are therefore confident that results would 

generalize to amyloid PET as well.28 In our updated models, we replaced t-tau by p-tau to improve 

alignment with the recently published NIA-AA criteria.10 As CSF t-tau and p-tau are very highly 

correlated, this replacement did not influence the model performance. One could debate whether 

APOE would have been a helpful addition to the models. Although APOE e4 is the strongest genetic 

risk factor for AD, we decided not to include this genetic characteristic however, as APOE is currently 

not used in clinical practice, and likewise is mentioned in none of the diagnostic guidelines. Of note, in 

a former paper, we found that including APOE e4 status as an additional variable in biomarker-based 

models to predict dementia in MCI did not increase prognostic performance or alter the predictions on 

an individual level.28 

The recently launched NIA-AA research framework states that by coding research participants 

according to the AT(N) system, the field moves in the direction of precision medicine.10  This coding 

system highly depends on cut-off values, as a patient is either positive or negative for a specific 

biomarker. As a consequence of this dichotomy, the AT(N) system comprises eight categories. For 

clinical practice however, the use of eight categories is rather complex. But simultaneously, reality 

may be even more complicated than eight categories as the dichotomization does not include 

information on extent of abnormality. In the current study we present a model in which A, T and N 

biomarkers are simultaneously taken into account, yet can be entered in a continuous fashion, to yield 

risk estimation of disease progression to dementia in individual MCI patients. By doing so, every 

combination is possible and maximum information from each biomarker is exploited. To further foster 

clinical usefulness, our models provide probabilities of progression within a specific time frame, while 

taking patient characteristics into account. The NIA-AA coding scheme does not provide this type of 
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information yet. From risk communication literature we know that a numeric format of risk 

communication is preferred above verbal formats (high, intermediate, low), as verbal formats are 

sensitive to a high degree of variability in interpretation.29 Accompanying the risk estimate with a time 

frame is considered best practice, ideally with a visual representation.29  

The current models are updated to allow the use of raw values of different platforms for CSF and two 

widely used methods of hippocampal volume calculation, further promoting generalizability. With 

regards to CSF, the field is currently shifting away from manual assays like Luminex xMAP and 

Innotest ELISA, towards automated platforms like Elecsys and Lumipulse. In the current study, we 

used a recently published equation to bridge Innotest values to Elecsys values.30 We used the same 

method to bridge Luminex to Elecsys values. For the calculation of brain volumes, there is more 

variation in software. We were able to bridge FSL FIRST data to Freesurfer. These two software 

packages are widely used, easily available and have a clear pipeline.   

A potential limitation of bridging different types of data, is that it may cause additional noise on the 

risk prediction. However, this did not negatively affect the prognostic performance. Another limitation 

is that we used complete cases only in the analyses, resulting in sample size variations and might 

introduce a degree of bias.24  Lastly, the cohorts used in this study inevitably differed not only in the 

definition of the predictors, but also in the outcome of AD-dementia. In validating prediction models, 

such differences may be intentional for two reasons.24 If we would like our models to have clinical 

usability, we should align with clinical practice. And in clinical practice, differences in the definition 

of AD dementia are inevitable. Second, using different definitions in the outcome measure of our 

analysis will give us information on whether the models can be extrapolated to different populations.  

Among the strengths of our study is the size and heterogeneity of the cohorts used. Moreover, 

prediction models, especially when constructed with Cox proportional hazards analysis, are often not 

validated to the extent that we did.11 We thoroughly tested for center-effects and concluded that 

adjustment for center could safely be omitted. This finding greatly enhances the generalizability and 

therefore the clinical applicability of our models, since it implies that the models can also be applied to 
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centers not included in the current study. Of note, the models are specifically of relevance for memory 

clinics and perhaps in a trial setting, and cannot (yet) be extrapolated to for example general 

practitioners. For risk stratification purposes, discrimination between those who will and those who 

won’t progress to dementia is clearly the key indicator of model success or failure. But for a model to 

be used in clinical practice and to provide patients with probabilistic information, calibration (i.e. 

concordance between predicted and observed outcome) is very important as well. In the evaluation of 

prediction models, this aspect is often neglected as studies do not report the baseline survival function. 

As we ultimately want our study to support clinical practice, we performed a strict type of calibration 

assessment, leading us to conclude that the models are well calibrated for predictions well beyond five 

years.11  

In conclusion, we have constructed and validated biomarker-based models for prediction of 

progression to dementia in MCI patients. We have shown the generalizability and robustness of the 

predictions and the models are made freely available by the authors upon request. The outcomes of 

this study facilitate a more timely and accurate diagnosis which is of high importance at the individual 

level even in the absence of specific therapies, as this is the starting point to plan and organize care.  
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Figure 1. Flow chart of samples used 

 

ADC= Amsterdam Dementia Cohort, ADNI= Alzheimer’s Disease Neuroimaging Initiative, 

CSF=cerebrospinal fluid, EMIF-AD= European Medical Information Framework, HCV=hippocampal 

volume. Flow of subjects included in the validation analyses and model updates.  
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Figure 2. Model performance of published models 

 

ADC= Amsterdam Dementia Cohort, ADNI= Alzheimer’s Disease Neuroimaging Initiative, 

CSF=cerebrospinal fluid, EMIF-AD= European Medical Information Framework for AD, 

HCV=hippocampal volume. As a reference, the model performance of the original development and 

validation cohort are shown in grey. Pooled estimates of model performance for AD-dementia as 

clinical endpoint are shown in Supplemental Figure 3 (page 8). 
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Figure 3. Calibration of biomarker-based models 

  

ATN=Amyloid (Abeta), tauopathy (p-tau), neurodegeneration (HCV), CSF=cerebrospinal fluid, 

HCV=hippocampal volume. Risk groups were made based on the PI determined, resulting in a good 

(>84th percentile), fairly good (50-84th percentile), fairly poor (16-50th percentile) and poor prognosis 

(<16th percentile group).  

Solid lines: Observed progression rates (Kaplan-Meier), dashed lines: predicted progression by the cox 

models. Findings are based on data from all four cohorts. Calibration of model performance for 

dementia as clinical endpoint are shown in Supplemental Figure 4 (page 15). 
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Table 1. Study Characteristics 

Characteristic ADC ADNI EMIF-AD BioFINDER 

N  666 829 883 233 

Baseline data 

collection period 
1995-2014 2004-2014 

Varied per substudy; 

supplemental table 1 

(page 2-3).  

2010-2015 

Study design 
Mono-center cohort 

study 

Multicenter longitudinal 

cohort study 

Multicenter longitudinal 

cohort study 

Multicenter 

longitudinal cohort 

study 

Setting Tertiary memory clinic Research Memory clinics Memory clinics 

Inclusion criteria 

Referred to memory 

clinic, do not fulfill 

criteria for dementia.  

Memory complaints 

verified by study partner, 

Abnormal memory 

functioning, MMSE 

between 24-30, 

CDR=0·5, do not fulfill 

criteria for dementia 

Varied per substudy; 

supplemental table 1 

(page 2-3).   

Referred to memory 

clinic, age between 60-

80, baseline MMSE 

24-30, do not fulfill 

criteria for dementia 

Patients with 

outcome dementia 
288 (43%) 319 (38%) 272 (31%) 128 (55%) 

Follow-up 
Clinical follow-up 

every 12 months 
3- to 12 month interval 

Varied per substudy; 

supplemental table 1 

(page 2-3). 

Every 12 months for at 

least 6 years 

MRI data available 539 (81%) 705 (85%) 727 (82%) 233 (100%) 

MRI quantification 

method 

FSL-FIRST, Freesurfer 

version 5·3 
Freesurfer version 5·3 

Varied per substudy; 

supplemental table 1 

(page 2-3). 

Freesurfer version 5·3 

CSF data available 485 (73%) 558 (67%) 366 (41%) 221 (95%) 

CSF platform Innotest Luminex and Elecsys Innotest Innotest 

AD= Alzheimer’s disease, ADC= Amsterdam Dementia Cohort, ADNI= Alzheimer’s Disease 

Neuroimaging Initiative, CDR=clinical dementia rating scale, CSF= cerebrospinal fluid, EMIF= 

European Medical Information Framework, MMSE= mini-mental state examination, MRI= magnetic 

resonance imaging,  
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Table 2. Cohort characteristics. 

 Original sample4   New validation sample 

 

ADC,  

Netherlands 

ADNI-2, 

USA   

ADNI,  

USA 

EMIF-AD, 

Europe 

BioFINDER,  

Sweden 

  n=485 n=299   n=530 n=883 n=233 

No. Progressors 243 (50%) 88 (29%)   231 (43%) 272 (31%) 128 (55%) 

AD dementia 195 (40%) 85 (28%)   223 (42%) 218 (25%) 87 (37%) 

Other types of dementia 48 (10%) 3 (1%)   8 (2%) 54 (6%) 41 (18%) 

Follow-up time 2·4±1·6 2·6±1·4   3·3±2·4 2·2±1·1 2·3±1·3 

Age 67±8 71±7   73±8 69±8 71±5 

Sex (F) 192 (40%) 132 (45%)   204 (38%) 461 (52%) 97 (41%) 

MMSE 27±2 28±2   27±2 27±2 27±2 

Hippocampal volume (cm3) 6·9±1·1* 6·9±1·1   6·6±1·1 0·02±0·99# 6·7±1·2 

CSF abeta (pg/mL) 876±547* 872±322*   990±571 913±603 635±407 

CSF t-tau (pg/mL) 256±141* 280±131*   293±126 230±111 222±80 

CSF p-tau (pg/mL) 27±16 27±15   29±15 25±16 25±14 

 *Values are bridged and do therefore not correspond with the values from the original paper 

#HCV in the EMIF cohort was measured with different techniques than FSL-FIRST or Freesurfer, 

therefore the values were not bridged but converted to z-scores. Note that for the ADC cohort we here 

present the characteristics of the original sample. For the current study, n=181 (n=45 (25%) 

progressors) new patients were included, making the total sample size for ADC n=666. 

AD=Alzheimer’s disease, F=female, MMSE=mini-mental state examination, CSF=Cerebrospinal 

fluid, ADC=Amsterdam dementia cohort, ADNI=Alzheimer’s disease neuroimaging initiative, EMIF-

AD=European Medical Information Framework for AD.  
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Table 3. Harrell’s C of published models 

Model Original 

parameters 

Refitted parameters 

without Center Specific 

effects 

Refitted parameters 

with Center Specific 

effects 

Demographics only 0.62 [0.59-0.65] 0·63 [0·61-0·65] 0·65 [0·64-0·68] 

HCV model 0.67 [0.62-0.72] 0·69 [0·67-0·71] 0·69 [0·67-0·72] 

CSF model 0.67 [0.64-0.71] 0·72 [0·68-0·74] 0·72 [0·70-0·74] 

CSF model with p-tau NA 0·72 [0·70-0·74] 0·72 [0·69-0·74] 

Presented data are Harrell’s concordance statistics [95%CI]. Outcome was progression to any type of 

dementia. CSF=Cerebrospinal fluid; HCV=hippocampal volume; NA=not applicable. Model 

performances of the models for AD dementia as clinical endpoint are shown in supplemental Table 3. 
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Table 4. Partial regression coefficients and model performance of the ATN model 

ATN model 

Partial 

Regression 

Coefficients 

95%CI 
Harrell’s 

C 

Abeta -0·5187 [-0·633 –  -0·405]  

p-tau 0·6207 [0·439 – 0·802]  

HCV -0·4164 [-0·516 –  -0·317]  

Age -0·0065 [-0·020 – 0·007] 0·74 

MMSE -0·1107 [-0·151 –  -0·070] [0·71-0·76] 

Abeta*p-tau 0·1772 [-0·024 –  0·378]  

Abeta*age 0·0166 [-0·002 – 0·035]  

p-tau*MMSE 0·0928 [0·019 – 0.167]  

HCV= hippocampal volume; MMSE=Mini-mental state examination. Model is based on cross 

validated estimates from all cohorts. ATN model for AD dementia as clinical endpoint is shown in 

supplemental Table 5. 

 


