25 research outputs found
C–O isotope geochemistry of the Florida phosphate of Four Corners and Hardee County mines, USA: Implication for genesis and diagenesis
© 2017 Elsevier B.V. The study area located in Florida, USA and emphasized on low-grade phosphorites in Hardee County (HC) and Four Corners (FC) mining areas. The main purpose of this study is to apply a standard geochemical technique to understand the diagenetic history and paleo-environmental aspects of phosphates within one of the major phosphate deposits in the USA. The effect of diagenesis on the phosphate minerals was studied by isotope analysis of the phosphate bone fragments and phosphatized mudclasts and rods. The environmental conditions that prevailed during the life of organisms were assessed by isotope analysis of the shark teeth. In this paper, variation in stable isotope (δ18O and δ13C) signatures of structural carbonate in rocks and shark teeth were studied in Florida phosphate. The studied samples show negative values for both δ13C and δ18O isotopes of structural carbonate. The light mudclast samples shows higher oxygen ratios (− 1.6) than the dark mudclasts (− 2.3) in Hardee County, whereas those values were lower, − 2.3 and − 3, respectively, in Four Corners samples. The shark teeth found in the deposits show narrow variations in values of δ13C (− 3.4 to − 4.9%o) and δ18O (− 1.4 to 2.1%o) isotope. The bone fragments in the deposits are more similar to the light mudclasts regarding the isotope ratios and carbonate content. The alteration is evident in the Florida phosphorites where δ18O values of bulk teeth are higher than those of bones and mudclast. This alteration could be because of increasing crystallinity and decreasing carbonate content with increasing depth of burial
Pulpal sequelae after trauma to anterior teeth among adult Nigerian dental patients
<p>Abstract</p> <p>Background</p> <p>Epidemiological studies show that about 11.6% to 33.0% of all boys and about 3.6% to 19.3% of all girls suffer dental trauma of varying severity before the age of 12 years. Moderate injuries to the periodontium such as concussion and subluxation are usually associated with relatively minor symptoms and hence may go unnoticed by the patient or the dentist, if consulted. Patients with these kinds of injuries present years after a traumatic accident most of the time with a single discoloured tooth. This study sets out to document the incidence of various posttraumatic sequelae of discoloured anterior teeth among adult Nigerian dental patients.</p> <p>Methods</p> <p>One hundred and sixty eight (168) traumatized discoloured anterior teeth in 165 patients were studied. Teeth with root canal treatment were excluded from the study. Partial obliteration was recorded when the pulp chamber or root canal was not discernible or reduced in size on radiographs, total obliteration was recorded when pulp chamber and root canal were not discernible. A retrospective diagnosis of concussion was made from patient's history of trauma to the tooth without abnormal loosening, while subluxation was made from patient's history of trauma to the tooth with abnormal loosening.</p> <p>Results</p> <p>Of the 168 traumatized discoloured anterior teeth, 47.6% and 31.6% had partial and total obliteration of the pulp canal spaces respectively, 20.8% had pulpal necrosis. Concussion and subluxation injuries resulted more in obliteration of the pulp canal space, while fracture of the teeth resulted in more pulpal necrosis (p < 0.001). Injuries sustained during the 1<sup>st </sup>and 2<sup>nd </sup>decade of life resulted more in obliteration of the pulp canal space, while injuries sustained in the 3<sup>rd </sup>decade resulted in more pulpal necrosis.</p> <p>Conclusion</p> <p>Calcific metamorphosis developed more in teeth with concussion and subluxation injuries. Pulpal necrosis occurred more often in traumatized teeth including fractures.</p
Loss of the Auxiliary α 2δ1 Voltage-Sensitive Calcium Channel Subunit Impairs Bone Formation and Anabolic Responses to Mechanical Loading
Voltage-sensitive calcium channels (VSCCs) influence bone structure and function, including anabolic responses to mechanical loading. While the pore-forming (α1) subunit of VSCCs allows Ca2+ influx, auxiliary subunits regulate the biophysical properties of the pore. The α2δ1 subunit influences gating kinetics of the α1 pore and enables mechanically induced signaling in osteocytes; however, the skeletal function of α2δ1 in vivo remains unknown. In this work, we examined the skeletal consequences of deleting Cacna2d1, the gene encoding α2δ1. Dual-energy X-ray absorptiometry and microcomputed tomography imaging demonstrated that deletion of α2δ1 diminished bone mineral content and density in both male and female C57BL/6 mice. Structural differences manifested in both trabecular and cortical bone for males, while the absence of α2δ1 affected only cortical bone in female mice. Deletion of α2δ1 impaired skeletal mechanical properties in both sexes, as measured by three-point bending to failure. While no changes in osteoblast number or activity were found for either sex, male mice displayed a significant increase in osteoclast number, accompanied by increased eroded bone surface and upregulation of genes that regulate osteoclast differentiation. Deletion of α2δ1 also rendered the skeleton insensitive to exogenous mechanical loading in males. While previous work demonstrates that VSCCs are essential for anabolic responses to mechanical loading, the mechanism by which these channels sense and respond to force remained unclear. Our data demonstrate that the α2δ1 auxiliary VSCC subunit functions to maintain baseline bone mass and strength through regulation of osteoclast activity and also provides skeletal mechanotransduction in male mice. These data reveal a molecular player in our understanding of the mechanisms by which VSCCs influence skeletal adaptation
Oral health status of 12-year-old school children in Khartoum state, the Sudan; a school-based survey
<p>Abstract</p> <p>Background</p> <p>Few studies have investigated the prevalence of dental caries among school children in the past decades in Sudan rendering it difficult to understand the status and pattern of oral health.</p> <p>Methods</p> <p>A school-based survey was conducted using stratified random cluster sampling in Khartoum state, Sudan. Data was collected through interviews and clinical examination by a single examiner. DMFT was measured according to WHO criteria. Gingival index (GI) of Loe & Silness and Plaque index (PI) of Silness & Loe were used.</p> <p>Results</p> <p>The mean DMFT for 12-year-olds was found to be 0.42 with a significant caries index (SiC) of 1.4. Private school attendees had significantly higher DMFT (0.57) when compared to public school attendees (0.4). The untreated caries prevalence was 30.5%. In multivariate analysis caries experience (DMFT > 0) was found to be significantly and directly associated with socioeconomic status. The mean GI for the six index teeth was found to be 1.05 (CI 1.03 – 1.07) and the mean PI was 1.30 (CI 1.22 – 1.38).</p> <p>Conclusion</p> <p>The prevalence of caries was found to be low. The school children with the higher socioeconomic status formed the high risk group.</p
On the mineral characteristics and geochemistry of the Florida phosphate of Four Corners and Hardee County mines
© 2016 Elsevier B.V. The Florida phosphate deposits in Four Corners and Hardee County mines are composed mainly of phosphate minerals and quartz in addition to subordinate proportions of feldspars, dolomite, calcite, gypsum, kaolinite, attapulgite and montmorillonite. These phosphorites contain three structurally different types of mudclasts: massive mudclasts, mudclasts with concentric structure and mudclasts consisting of agglomerates of apatite microparticles. The latter are represented by particles resembling phosphatized fossil bacteria associated with microbial filaments, and hollow apatite particles having surfacial coatings and connected to microbial filaments. The Florida phosphate particles are reworked and vary in mineral composition, color and shape. They are composed of a mixture of well-crystalline species including carbonate fluorapatite (francolite), carbonate apatite and fluorapatite. The color variation of the phosphate particles is related to difference in mineral composition, extent of diagenetic effects and reworking. The light-colored mudclasts are characterized by the presence of carbonate apatite and aluminum hydroxide phosphate minerals, whereas the dark mudclasts are rich in iron aluminum hydroxide phosphate minerals. The Florida phosphorites are suggested to be formed partially by authigenetic precipitation, replacement of the sea floor carbonate and diatomite, and microbial processes. With respect to elemental geochemistry, the analyzed particles contain small percentages of sulfur and iron which are related to the occurrence of pyrite. Traces of silica and alumina are recorded which may be attributed to the diagenetic. Some of the tested particles are relatively rich in phosphorous, fluorine, calcium, and magnesium, while poor in silicon, potassium and sulfur. Whereas, the bioclasts (especially teeth) are relatively rich in calcium, phosphorous and fluorine while poor in silicon, aluminum, magnesium and potassium. Hence, the microchemical analyses revealed that differential diagenesis affected mudclasts more than bioclasts. There is a complete compositional gradation between clay and phosphate particles which reflects their interaction. This involved kaolinitization of the phosphate particles, phosphatization of the clay mineral particles and production of silica
Loss of the auxiliary α2δ1 voltage-sensitive calcium channel subunit impairs bone formation and anabolic responses to mechanical loading
Voltage-sensitive calcium channels (VSCCs) influence bone structure and function, including anabolic responses to mechanical loading. While the pore-forming (α1) subunit of VSCCs allows Ca2+ influx, auxiliary subunits regulate the biophysical properties of the pore. The α2δ1 subunit influences gating kinetics of the α1 pore and enables mechanically induced signaling in osteocytes; however, the skeletal function of α2δ1 in vivo remains unknown. In this work, we examined the skeletal consequences of deleting Cacna2d1, the gene encoding α2δ1. Dual-energy X-ray absorptiometry and microcomputed tomography imaging demonstrated that deletion of α2δ1 diminished bone mineral content and density in both male and female C57BL/6 mice. Structural differences manifested in both trabecular and cortical bone for males, while the absence of α2δ1 affected only cortical bone in female mice. Deletion of α2δ1 impaired skeletal mechanical properties in both sexes, as measured by three-point bending to failure. While no changes in osteoblast number or activity were found for either sex, male mice displayed a significant increase in osteoclast number, accompanied by increased eroded bone surface and upregulation of genes that regulate osteoclast differentiation. Deletion of α2δ1 also rendered the skeleton insensitive to exogenous mechanical loading in males. While previous work demonstrates that VSCCs are essential for anabolic responses to mechanical loading, the mechanism by which these channels sense and respond to force remained unclear. Our data demonstrate that the α2δ1 auxiliary VSCC subunit functions to maintain baseline bone mass and strength through regulation of osteoclast activity and also provides skeletal mechanotransduction in male mice. These data reveal a molecular player in our understanding of the mechanisms by which VSCCs influence skeletal adaptation
Quantitative analysis of γ‐glutamylisoleucine, γ‐glutamylthreonine, and γ‐glutamylvaline in HeLa cells using UHPLC‐MS/MS
γ‐Glutamylpeptides have been identified as potential biomarkers for a number of diseases including cancer, diabetes, and liver disease. In this study, we developed and validated a novel quantitative analytical strategy for measuring γ‐glutamylisoleucine, γ‐glutamylthreonine, and γ‐glutamylvaline, all of which have been previously reported as potential biomarkers for prostate cancer in HeLa cells using ultra‐high‐performance liquid chromatography‐tandem mass spectrometry. A BEH C18 column was used as the stationary phase. Mobile phase A was 99:1 water:formic acid and mobile phase B was acetonitrile. Chemical isotope labeling using benzoyl chloride was used as the internal standardization strategy. Sample preparation consisted of the addition of water to a frozen cell pellet, sonication, derivatization, centrifugation, and subsequent addition of an internal standard solution. The method was validated for selectivity, accuracy, precision, linearity, and stability. The determined concentrations of γ‐glutamylisoleucine, γ‐glutamylthreonine, and γ‐glutamylvaline in HeLa cells were 1.92 ± 0.06, 10.8 ± 0.4, and 1.96 ± 0.04 pmol/mg protein, respectively. In addition, the qualitative analysis of these analytes in human serum was achieved using a modified sample preparation strategy. To the best of our knowledge, this is the first report of the use of benzoyl chloride for chemical isotope labeling for metabolite quantitation in cells.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/169280/1/jssc7308.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/169280/2/jssc7308_am.pd