354 research outputs found

    Ultracold atoms in radio-frequency-dressed potentials beyond the rotating wave approximation

    Full text link
    We study dressed Bose-Einstein condensates in an atom chip radio-frequency trap. We show that in this system sufficiently strong dressing can be achieved to cause the widely used rotating wave approximation (RWA) to break down. We present a full calculation of the atom - field coupling which shows that the non-RWA contributions quantitatively alter the shape of the emerging dressed adiabatic potentials. The non-RWA contributions furthermore lead to additional allowed transitions between dressed levels. We use RF spectroscopy of Bose-Einstein condensates trapped in the dressed state potentials to directly observe the transition from the RWA to the beyond-RWA regime.Comment: 6 pages, 4 figure

    Occurrence of gas phase ammonia in the area of Beijing (China)

    Get PDF
    The atmospheric concentrations of gaseous ammonia have been measured during two field campaigns in the winter and in the summer of 2007 at Beijing (China). These measurements were carried out by means of diffusion annular denuders coated with phosphorous acid. The results were discussed from the standpoint of temporal and diurnal variations and meteorological effects. The daily average NH<sub>3</sub> concentrations were in the range of 0.20–44.38 μg/m<sup>3</sup> and showed regular temporal variations with higher concentrations during summer and with lower during winter. The temporal trends seemed to be largely affected by air temperature because of agricultural sources. No diurnal variability was observed for gaseous NH<sub>3</sub> levels in both winter and summer seasons. The highest ammonia value of 105.67 μg/m<sup>3</sup> was measured in the early morning during the summer period when stable atmospheric conditions occurred. The diurnal winter and summer trends of ammonia showed a weak dependence on the air temperature and they were affected nearly by wind direction suggesting regional and local source influences. Ammonia was also correlated with the atmospheric mixing in the boundary layer, and, with NO<sub>x</sub>, CO and PM<sub>2.5</sub> air concentrations supporting the hypothesis that the traffic may be also an important source of ammonia in Beijing

    Local mechanical properties of electrospun fibers correlate to their internal nanostructure.

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.The properties of polymeric nanofibers can be tailored and enhanced by properly managing the structure of the polymer molecules at the nanoscale. Although electrospun polymer fibers are increasingly exploited in many technological applications, their internal nanostructure, determining their improved physical properties, is still poorly investigated and understood. Here, we unravel the internal structure of electrospun functional nanofibers made by prototype conjugated polymers. The unique features of near-field optical measurements are exploited to investigate the nanoscale spatial variation of the polymer density, evidencing the presence of a dense internal core embedded in a less dense polymeric shell. Interestingly, nanoscale mapping the fiber Young's modulus demonstrates that the dense core is stiffer than the polymeric, less dense shell. These findings are rationalized by developing a theoretical model and simulations of the polymer molecular structural evolution during the electrospinning process. This model predicts that the stretching of the polymer network induces a contraction of the network toward the jet center with a local increase of the polymer density, as observed in the solid structure. The found complex internal structure opens an interesting perspective for improving and tailoring the molecular morphology and multifunctional electronic and optical properties of polymer fibers.V. Fasano and G. Potente are acknowledged for confocal and SEM images, respectively. The authors also gratefully thank S. Girardo for high-speed imaging of the polymer jet and E. Caldi for assistance in the SNOM measurements. We gratefully acknowledge the financial support of the United States-Israel Binational Science Foundation (BSF Grant 2006061), the RBNI-Russell Berrie Nanotechnology Institute, and the Israel Science Foundation (ISF Grant 770/11). The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement 306357 (ERC Starting Grant “NANO-JETS”)

    Solid solution decomposition and Guinier-Preston zone formation in Al-Cu alloys: A kinetic theory with anisotropic interactions

    Get PDF
    Using methods of statistical kinetic theory parametrized with first-principles interatomic interactions that include chemical and strain contributions, we investigated the kinetics of decomposition and microstructure formation in Al-Cu alloys as a function of temperature and alloy concentration. We show that the decomposition of the solid solution forming platelets of copper, known as Guinier-Preston (GP) zones, includes several stages and that the transition from GP1 to GP2 zones is determined mainly by kinetic factors. With increasing temperature, the model predicts a gradual transition from platelet-like precipitates to equiaxial ones and at intermediate temperatures both precipitate morphologies may coexist.Comment: 9 pages, 8 figure

    Developmental co-occurrence of psychopathology dimensions in childhood

    Get PDF
    Background: Comorbidity between psychopathologies may be attributed to genetic and environmental differences between people as well as causal processes within individuals, where one pathology increases risk for another. Disentangling between-person (co)variance from within-person processes of psychopathology dimensions across childhood may shed light on developmental causes of comorbid mental health problems. Here, we aim to determine whether and to what extent directional relationships between psychopathology dimensions within-person, and between individuals within families, play a role in comorbidity.// Methods: We conducted random intercepts cross-lagged panel model (RI-CLPM) analyses to unravel the longitudinal co-occurrence of child psychopathology dimensions, jointly estimating between-person and within-person processes from childhood to early adolescence (age 7–12). We further developed an extension of the model to estimate sibling effects within-family (wf-RI-CLPM). Analyses were separately conducted in two large population-based cohorts, TEDS and NTR, including parent-rated measures of child problem behaviours based on the SDQ and CBCL scales respectively.// Results: We found evidence for strong between-person effects underlying the positive intercorrelation between problem behaviours across time. Beyond these time-varying within-person processes accounted for an increasing amount of trait variance, within- and cross-trait, overtime in both cohorts. Lastly, by accommodating family level data, we found evidence for reciprocal directional influences within sib-pairs longitudinally.// Conclusions: Our results indicate that within-person processes partly explain the co-occurrence of psychopathology dimensions across childhood, and within sib-pairs. Analyses provided substantive results on developmental processes underlying comorbidity in behavioural problems. Future studies should consider different developmental timeframes to shed more light on the processes contributing to developmental comorbidity./

    Zipf's law, 1/f noise, and fractal hierarchy

    Full text link
    Fractals, 1/f noise, Zipf's law, and the occurrence of large catastrophic events are typical ubiquitous general empirical observations across the individual sciences which cannot be understood within the set of references developed within the specific scientific domains. All these observations are associated with scaling laws and have caused a broad research interest in the scientific circle. However, the inherent relationships between these scaling phenomena are still pending questions remaining to be researched. In this paper, theoretical derivation and mathematical experiments are employed to reveal the analogy between fractal patterns, 1/f noise, and the Zipf distribution. First, the multifractal process follows the generalized Zipf's law empirically. Second, a 1/f spectrum is identical in mathematical form to Zipf's law. Third, both 1/f spectra and Zipf's law can be converted into a self-similar hierarchy. Fourth, fractals, 1/f spectra, Zipf's law, and the occurrence of large catastrophic events can be described with similar exponential laws and power laws. The self-similar hierarchy is a more general framework or structure which can be used to encompass or unify different scaling phenomena and rules in both physical and social systems such as cities, rivers, earthquakes, fractals, 1/f noise, and rank-size distributions. The mathematical laws on the hierarchical structure can provide us with a holistic perspective of looking at complexity such as self-organized criticality (SOC).Comment: 20 pages, 9 figures, 3 table

    Collisional and thermal ionization of sodium Rydberg atoms I. Experiment for nS and nD atoms with n=8-20

    Full text link
    Collisional and thermal ionization of sodium nS and nD Rydberg atoms with n=8-20 has been studied. The experiments were performed using a two-step pulsed laser excitation in an effusive atomic beam at atom density of about 2 10^{10} cm^{-3}. Molecular and atomic ions from associative, Penning, and thermal ionization processes were detected. It has been found that the atomic ions were created mainly due to photoionization of Rydberg atoms by photons of blackbody radiation at the ambient temperature of 300K. Blackbody ionization rates and effective lifetimes of Rydberg states of interest were determined. The molecular ions were found to be from associative ionization in Na(nL)+Na(3S) collisions. Rate constants of associative ionization have been measured using an original method based on relative measurements of Na_{2}^{+} and Na^{+} ion signals.Comment: 23 pages, 10 figure

    Renewal processes and fluctuation analysis of molecular motor stepping

    Get PDF
    We model the dynamics of a processive or rotary molecular motor using a renewal processes, in line with the work initiated by Svoboda, Mitra and Block. We apply a functional technique to compute different types of multiple-time correlation functions of the renewal process, which have applications to bead-assay experiments performed both with processive molecular motors, such as myosin V and kinesin, and rotary motors, such as F1-ATPase

    Relationship between dynamical heterogeneities and stretched exponential relaxation

    Full text link
    We identify the dynamical heterogeneities as an essential prerequisite for stretched exponential relaxation in dynamically frustrated systems. This heterogeneity takes the form of ordered domains of finite but diverging lifetime for particles in atomic or molecular systems, or spin states in magnetic materials. At the onset of the dynamical heterogeneity, the distribution of time intervals spent in such domains or traps becomes stretched exponential at long time. We rigorously show that once this is the case, the autocorrelation function of the renewal process formed by these time intervals is also stretched exponential at long time.Comment: 8 pages, 4 figures, submitted to PR

    Measuring Gravito-magnetic Effects by Multi Ring-Laser Gyroscope

    Get PDF
    We propose an under-ground experiment to detect the general relativistic effects due to the curvature of space-time around the Earth (de Sitter effect) and to rotation of the planet (dragging of the inertial frames or Lense-Thirring effect). It is based on the comparison between the IERS value of the Earth rotation vector and corresponding measurements obtained by a tri-axial laser detector of rotation. The proposed detector consists of six large ring-lasers arranged along three orthogonal axes. In about two years of data taking, the 1% sensitivity required for the measurement of the Lense-Thirring drag can be reached with square rings of 6 mm side, assuming a shot noise limited sensitivity (20prad/s/Hz 20 prad/s/\sqrt{Hz}). The multi-gyros system, composed of rings whose planes are perpendicular to one or the other of three orthogonal axes, can be built in several ways. Here, we consider cubic and octahedron structures. The symmetries of the proposed configurations provide mathematical relations that can be used to study the stability of the scale factors, the relative orientations or the ring-laser planes, very important to get rid of systematics in long-term measurements, which are required in order to determine the relativistic effects.Comment: 24 pages, 26 Postscript figure
    • …
    corecore