100 research outputs found

    Development of Accounting Practice in Various Approaches in the Field of Science

    Get PDF
    This study discusses the development of accounting practice in various approaches in the field of science. Bookkeeping must create in arrange to be able to supply the data necessary for choice making within the company for any changes within the trade environment. Trade globalization can be seen from free exchange between nations which has come about within the development of many multinational companies, this moreover influences the require for harmonization of a standard that applies to the total world. Bookkeeping can moreover be classified agreeing to a country's legitimate framework. This see has ruled bookkeeping considering for the final 20 a long time or so. The result could be a solid capital showcase creating in common law nations and a powerless capital advertise creating in code law nations. Companies in common law nations get a huge sum of capital through open advertising of offers to a number of financial specialists, compared to companies in code-dwelling nations

    PRODUKSI BIODIESEL DARI LUMPUR AKTIF BASAH DALAM KONDISI SUBKRITIS

    Get PDF
    Sebuah metode baru dalam mengkonversi Lumpur aktif basah menjadi biodiesel diusulkan dalam penelitian ini. Air digunakan sebagai reagen hidrolisis untuk meningkatkan ekstraksi lipid dalam Lumpur aktif dan sebagai k-atalis untuk- konversi lipid murni menjadi biodiesel dalam kondisi subkritis. Metode ini mampu mencapai konversi 90% dari FAME dalam waktu yang wajar tanpa memerlukan katalis asam/basa. Karena air digunakan sebagai katalis, proses penghilangan air tidak- lagi diperlukan. Oleh karena itu, metode ini mengurangi biaya pengolahan secara signifikan dalam produksi biodiesel dari Iumpur akti

    Emosjonell intelligens i multikulturelle høykompetente prosjektteam

    Get PDF
    Masteroppgave i økonomi og administrasjon 2007 - Høgskolen i Agder, Kristiansan

    A Multimodal Dataset and Benchmark for Radio Galaxy and Infrared Host Detection

    Full text link
    We present a novel multimodal dataset developed by expert astronomers to automate the detection and localisation of multi-component extended radio galaxies and their corresponding infrared hosts. The dataset comprises 4,155 instances of galaxies in 2,800 images with both radio and infrared modalities. Each instance contains information on the extended radio galaxy class, its corresponding bounding box that encompasses all of its components, pixel-level segmentation mask, and the position of its corresponding infrared host galaxy. Our dataset is the first publicly accessible dataset that includes images from a highly sensitive radio telescope, infrared satellite, and instance-level annotations for their identification. We benchmark several object detection algorithms on the dataset and propose a novel multimodal approach to identify radio galaxies and the positions of infrared hosts simultaneously.Comment: Accepted in NeurIPS 2023 conference ML4PS workshop (https://nips.cc/). The full version accepted in PASA, is available at https://doi.org/10.1017/pasa.2023.6

    Transferred Thin Film Lithium Niobate as Millimeter Wave Acoustic Filter Platforms

    Full text link
    This paper reports the first high-performance acoustic filters toward millimeter wave (mmWave) bands using transferred single-crystal thin film lithium niobate (LiNbO3). By transferring LiNbO3 on the top of silicon (Si) and sapphire (Al2O3) substrates with an intermediate amorphous Si (aSi) bonding and sacrificial layer, we demonstrate compact acoustic filters with record-breaking performance beyond 20 GHz. In the LN-aSi-Al2O3 platform, the third-order ladder filter exhibits low insertion loss (IL) of 1.62 dB and 3-dB fractional bandwidth (FBW) of 19.8% at 22.1 GHz, while in the LN-aSi-Si platform, the filter shows low IL of 2.38 dB and FBW of 18.2% at 23.5 GHz. Material analysis validates the great crystalline quality of the stacks. The high-resolution x-ray diffraction (HRXRD) shows full width half maximum (FWHM) of 53 arcsec for Al2O3 and 206 arcsec for Si, both remarkably low compared to piezoelectric thin films of similar thickness. The reported results bring the state-of-the-art (SoA) of compact acoustic filters to much higher frequencies, and highlight transferred LiNbO3 as promising platforms for mmWave filters in future wireless front ends.Comment: 4 pages, 8 figures, accepted by IEEE MEMS 202

    Mathematical modeling of thermal management at different atmospheric pressure conditions

    Get PDF
    Cooling process is an important element in the correct functioning of all electronic devices. While some components can resist high temperatures, others are damaged during overheating conditions. We performed numerical simulation to study the temperature variation during cooling process of electronic devices that are subject to the effect of different pressures. Commonly the correct functioning of instruments is tested under specific conditions given by the location of the manufacturer but generally the consumer uses the device in a different region. Cooling process performed by convection uses the air provided by a fan. Fluid properties such as kinematic viscosity are influenced by pressure and the effect in cooling is demonstrated by analyzing the variation of surface temperature at different pressures. This study allows us to understand the importance of fluid flow speed in controlling the heating rate. We performed numerical simulation at different air speed (10 - 20 m/s) and pressure (77 - 100 kPa) which corresponds to the elevation of cities that are located between 31mand 2240 m., additionally we studied the maximum amount of power dissipation as a function of air velocity with radiation contribution and without radiation effect

    Surface Modification of Bioresorbable Phosphate Glasses for Controlled Protein Adsorption

    Get PDF
    The traditional silicate bioactive glasses exhibit poor thermal processability, which inhibits fiber drawing or sintering into scaffolds. The composition of the silicate glasses has been modified to enable hot processing. However, the hot forming ability is generally at the expense of bioactivity. Metaphosphate glasses, on the other hand, possess excellent thermal processability, congruent dissolution, and a tailorable degradation rate. However, due to the layer-by-layer dissolution mechanism, cells do not attach to the material surface. Furthermore, the congruent dissolution leads to a low density of OH groups forming on the glass surface, limiting the adsorption of proteins. It is well regarded that the initial step of protein adsorption is critical as the cells interact with this protein layer, rather than the biomaterial itself. In this paper, we explore the possibility of improving protein adsorption on the surface of phosphate glasses through a variety of surface treatments, such as washing the glass surface in acidic (pH 5), neutral, and basic (pH 9) buffer solutions followed or not by a treatment with (3-aminopropyl)triethoxysilane (APTS). The impact of these surface treatments on the surface chemistry (contact angle, ζ-potential) and glass structure (FTIR) was assessed. In this manuscript, we demonstrate that understanding of the material surface chemistry enables to selectively improve the adsorption of albumin and fibronectin (used as model proteins). Furthermore, in this study, well-known silicate bioactive glasses (i.e., S53P4 and 13-93) were used as controls. While surface treatments clearly improved proteins adsorption on the surface of both silicate and phosphate glasses, it is of interest to note that protein adsorption on phosphate glasses was drastically improved to reach similar protein grafting ability to the silicate bioactive glasses. Overall, this study demonstrates that the limited cell/phosphate glass biological response can easily be overcome through deep understanding and control of the glass surface chemistry

    Applying a Space-Based Security Recovery Scheme for Critical Homeland Security Cyberinfrastructure Utilizing the NASA Tracking and Data Relay (TDRS) Based Space Network

    Get PDF
    Protection of the national infrastructure is a high priority for cybersecurity of the homeland. Critical infrastructure such as the national power grid, commercial financial networks, and communications networks have been successfully invaded and re-invaded from foreign and domestic attackers. The ability to re-establish authentication and confidentiality of the network participants via secure channels that have not been compromised would be an important countermeasure to compromise of our critical network infrastructure. This paper describes a concept of operations by which the NASA Tracking and Data Relay (TDRS) constellation of spacecraft in conjunction with the White Sands Complex (WSC) Ground Station host a security recovery system for re-establishing secure network communications in the event of a national or regional cyberattack. Users would perform security and network restoral functions via a Broadcast Satellite Service (BSS) from the TDRS constellation. The BSS enrollment only requires that each network location have a receive antenna and satellite receiver. This would be no more complex than setting up a DIRECTTV-like receiver at each network location with separate network connectivity. A GEO BSS would allow a mass re-enrollment of network nodes (up to nationwide) simultaneously depending upon downlink characteristics. This paper details the spectrum requirements, link budget, notional assets and communications requirements for the scheme. It describes the architecture of such a system and the manner in which it leverages off of the existing secure infrastructure which is already in place and managed by the NASAGSFC Space Network Project
    • …
    corecore