381 research outputs found
Strategic Asset Allocation Of Credit Guarantors
How to manage the portfolio of credit guarantors is important in practice and public policy, but has not been investigated well in the prior literature. We empirically compare four different approaches in managing credit guarantor portfolios. The four approaches are equal weighted, minimum variance, mean variance optimization and equal risk contribution methods. In terms of risk return ratio, the mean variance optimization model performs best in out-of-sample test. This result contrasts with previous findings against mean variance optimization. Our results are robust. The results do not change as the characteristics of guarantee portfolio vary
A Study on the Effect on River Habitat Change by small dam removal - A Case Study of Gokreung 2 & Gotan Small Dam Removal
Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchiv
Kuwaitâs Strategic Response to its Developmental Challenges: Recasting its Strategic Options and Implementation Strategy from a Korean Perspective
Chapter 01. Introduction: Confronting Kuwaitâs Present Reality
Chapter 02. Critical Factors and SWOT Analysis for Crafting Strategic Response
Chapter 03. Managing Stakeholders and Crafting the Implementation Strategy
Chapter 04. Labor Market Reform
Chapter 05. Updating Education and Human Resources
Chapter 06. Fiscal Reform in Kuwait
Chapter 07. Other Focal Areas Of Policy Initiatives For The Upcoming Five-Year Development Pla
RECYCLING PROCESS OF U3O8 POWDER IN MnO-Al2O3 DOPED LARGE GRAIN UO2 PELLETS
The effect of various process variables on the powder properties of recycled U3O8 from MnO-Al2O3 doped large grain UO2 pellets and the effect of those recycled U3O8 powders on the sintered density and grain size of MnO-Al2O3 doped large grain UO2 pellets have been investigated. The evolution of morphology, size, and BET surface area of the recycled U3O8 powders according to the respective variation of the thermo-mechanical treatment variables of oxidation temperature, powder milling, and sequential cyclic heat treatment of oxidation and then reduction was examined. The correlation between the BET surface area of recycled U3O8 powder and the sintered pellet properties of MnO-Al2O3 doped pellets showed that the pellet density and grain size of doped pellets were increased and then saturated by increasing the BET surface area of the recycled U3O8 powder. The density and grain size of the pellets were maximized when the BET surface area of the recycled U3O8 powder was in the vicinity of 3m2/g. Among the process variables applied in this study, the cyclic heat treatment followed by low temperature oxidation was a potential process combination to obtain the sinter-active U3O8 powder
Proximity-Directed Labeling Reveals a New Rapamycin-Induced Heterodimer of FKBP25 and FRB in Live Cells
Mammalian target of rapamycin (mTOR) signaling is a core pathway in cellular metabolism, and control of the mTOR pathway by rapamycin shows potential for the treatment of metabolic diseases. In this study, we employed a new proximity biotin-labeling method using promiscuous biotin ligase (pBirA) to identify unknown elements in the rapamycin-induced interactome on the FK506-rapamycin binding (FRB) domain in living cells. FKBP25 showed the strongest biotin labeling by FRB-pBirA in the presence of rapamycin. Immunoprecipitation and immunofluorescence experiments confirmed that endogenous FKBP25 has a rapamycin-induced physical interaction with the FRB domain. Furthermore, the crystal structure of the ternary complex of FRB-rapamycin-FKBP25 was determined at 1.67-angstrom resolution. In this crystal structure we found that the conformational changes of FRB generate a hole where there is a methionine-rich space, and covalent metalloid coordination was observed at C2085 of FRB located at the bottom of the hole. Our results imply that FKBP25 might have a unique physiological role related to metallomics in mTOR signaling.ope
Prediction of Obstructive Sleep Apnea Based on Respiratory Sounds Recorded Between Sleep Onset and Sleep Offset
Objectives To develop a simple algorithm for prescreening of obstructive sleep apnea (OSA) on the basis of respiratorysounds recorded during polysomnography during all sleep stages between sleep onset and offset. Methods Patients who underwent attended, in-laboratory, full-night polysomnography were included. For all patients, audiorecordings were performed with an air-conduction microphone during polysomnography. Analyses included allsleep stages (i.e., N1, N2, N3, rapid eye movement, and waking). After noise reduction preprocessing, data were segmentedinto 5-s windows and sound features were extracted. Prediction models were established and validated with10-fold cross-validation by using simple logistic regression. Binary classifications were separately conducted for threedifferent threshold criteria at apnea hypopnea index (AHI) of 5, 15, or 30. Prediction model characteristics, includingaccuracy, sensitivity, specificity, positive predictive value (precision), negative predictive value, and area under thecurve (AUC) of the receiver operating characteristic were computed. Results A total of 116 subjects were included; their mean age, body mass index, and AHI were 50.4 years, 25.5 kg/m2, and23.0/hr, respectively. A total of 508 sound features were extracted from respiratory sounds recorded throughoutsleep. Accuracies of binary classifiers at AHIs of 5, 15, and 30 were 82.7%, 84.4%, and 85.3%, respectively. Predictionperformances for the classifiers at AHIs of 5, 15, and 30 were AUC, 0.83, 0.901, and 0.91; sensitivity, 87.5%,81.6%, and 60%; and specificity, 67.8%, 87.5%, and 94.1%. Respective precision values of the classifiers were89.5%, 87.5%, and 78.2% for AHIs of 5, 15, and 30. Conclusion This study showed that our binary classifier predicted patients with AHI of âĽ15 with sensitivity and specificityof >80% by using respiratory sounds during sleep. Since our prediction model included all sleep stage data, algorithmsbased on respiratory sounds may have a high value for prescreening OSA with mobile devices
NSUN2 introduces 5-methylcytosines in mammalian mitochondrial tRNAs.
Expression of human mitochondrial DNA is indispensable for proper function of the oxidative phosphorylation machinery. The mitochondrial genome encodes 22 tRNAs, 2 rRNAs and 11 mRNAs and their post-transcriptional modification constitutes one of the key regulatory steps during mitochondrial gene expression. Cytosine-5 methylation (m5C) has been detected in mitochondrial transcriptome, however its biogenesis has not been investigated in details. Mammalian NOP2/Sun RNA Methyltransferase Family Member 2 (NSUN2) has been characterized as an RNA methyltransferase introducing m5C in nuclear-encoded tRNAs, mRNAs and microRNAs and associated with cell proliferation and differentiation, with pathogenic variants in NSUN2 being linked to neurodevelopmental disorders. Here we employ spatially restricted proximity labelling and immunodetection to demonstrate that NSUN2 is imported into the matrix of mammalian mitochondria. Using three genetic models for NSUN2 inactivation-knockout mice, patient-derived fibroblasts and CRISPR/Cas9 knockout in human cells-we show that NSUN2 is necessary for the generation of m5C at positions 48, 49 and 50 of several mammalian mitochondrial tRNAs. Finally, we show that inactivation of NSUN2 does not have a profound effect on mitochondrial tRNA stability and oxidative phosphorylation in differentiated cells. We discuss the importance of the newly discovered function of NSUN2 in the context of human disease.Medical Research Council, UK [MC_UU_00015/4 to M.M.]; EMBO [ALFT 701-2013 to L.V.H.]; National Research Foundation of Korea [NRF-2019R1A2C3008463 to S.Y.L and H.W.R.]; Cancer Research UK [C13474/A18583, C6946/A14492 to E.A.M.]; Wellcome Trust [104640/Z/14/Z, 092096/Z/10/Z to E.A.M.]. Funding for open access charge: MRC
Triglyceride glucose index predicts coronary artery calcification better than other indices of insulin resistance in Korean adults: the Kangbuk Samsung Health Study
Purpose Insulin resistance is one of the most important mechanisms in the development of diabetes, and it is closely related to the presence and severity of coronary heart disease. Triglyceride glucose (TyG) index is a useful marker of insulin resistance; however, few studies have investigated the relationship between TyG and subclinical atherosclerosis. Therefore, we evaluated the association of TyG and subclinical coronary atherosclerosis as measured by coronary artery calcium score (CACS). Methods Our study included 30,776 participants (mean age of 41 years, 80.4% male) enrolled in a health screening program, in whom CACS were measured. Homeostasis model assessment of insulin resistance (HOMA-IR), TyG index, TyG-body mass index (BMI), and TyG-waist circumference (WC) were subsequently analyzed. Indices were calculated using the following formulae: HOMA-IR=fasting insulin (ÎźU/mL)Ăfasting plasma glucose (FPG; mmol/L)/22.5; TyG index=Ln [TG (mg/dL)ĂFPG (mg/dL)/2]; TyG-BMI=TyG indexĂBMI; and TyG-WC=TyG indexĂWC. CACS was measured using multidetector computed tomography, and the presence of coronary artery calcification (CAC) was defined by CACS>0. Results The prevalence of CAC was 14.4% in the study population. Multivariate logistic regression analysis showed that participants with TyG-BMI in the highest tertile were 1.638 times more likely to have CAC after adjustment for other metabolic parameters compared with participants with TyG-BMI in the lowest tertile (odds ratio, 1.612; 95% confidence interval, 1.465 to 1.774). The receiver operating characteristics curve for prediction of CAC showed that TyG-WC index had a higher area under the curve (AUC=0.626) than other indices (AUCTyG=0.617, AUCTyG-BMI=0.616, AUCHOMA-IR=0.562). Conclusion TyG index predicted CAC better than other markers of insulin resistance, and could be a useful marker for predicting subclinical atherosclerosis
- âŚ