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INTRODUCTION

Obstructive sleep apnea (OSA) is closely related to important 
medical conditions such as hypertension, cardiovascular diseas-
es, neurovascular diseases, and metabolic syndromes [1]. In ad-
dition, the prevalence of OSA reaches approximately 26% in 
middle-aged to older adults [2] and is increasing with the rate of 
obesity in the general population. However, OSA is frequently 
underrecognized and underdiagnosed, possibly because of the 
limited accessibility of diagnostic tests due to high costs and in-
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Objectives. To develop a simple algorithm for prescreening of obstructive sleep apnea (OSA) on the basis of respiratory 
sounds recorded during polysomnography during all sleep stages between sleep onset and offset.

Methods. Patients who underwent attended, in-laboratory, full-night polysomnography were included. For all patients, au-
dio recordings were performed with an air-conduction microphone during polysomnography. Analyses included all 
sleep stages (i.e., N1, N2, N3, rapid eye movement, and waking). After noise reduction preprocessing, data were seg-
mented into 5-s windows and sound features were extracted. Prediction models were established and validated with 
10-fold cross-validation by using simple logistic regression. Binary classifications were separately conducted for three 
different threshold criteria at apnea hypopnea index (AHI) of 5, 15, or 30. Prediction model characteristics, including 
accuracy, sensitivity, specificity, positive predictive value (precision), negative predictive value, and area under the 
curve (AUC) of the receiver operating characteristic were computed.

Results. A total of 116 subjects were included; their mean age, body mass index, and AHI were 50.4 years, 25.5 kg/m2, and 
23.0/hr, respectively. A total of 508 sound features were extracted from respiratory sounds recorded throughout 
sleep. Accuracies of binary classifiers at AHIs of 5, 15, and 30 were 82.7%, 84.4%, and 85.3%, respectively. Predic-
tion performances for the classifiers at AHIs of 5, 15, and 30 were AUC, 0.83, 0.901, and 0.91; sensitivity, 87.5%, 
81.6%, and 60%; and specificity, 67.8%, 87.5%, and 94.1%. Respective precision values of the classifiers were 
89.5%, 87.5%, and 78.2% for AHIs of 5, 15, and 30.

Conclusion. This study showed that our binary classifier predicted patients with AHI of ≥15 with sensitivity and specificity 
of >80% by using respiratory sounds during sleep. Since our prediction model included all sleep stage data, algo-
rithms based on respiratory sounds may have a high value for prescreening OSA with mobile devices.
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sufficient test facilities for sleep studies. 
The gold standard examination is attended, in-laboratory, full-

night polysomnography with multichannel monitoring. Although 
it provides an exact set of sleep data including apnea hypopnea 
index (AHI), many subjects at risk of OSA cannot afford poly-
somnography. Thus, various portable or at-home sleep test de-
vices have been developed and are currently in use. However, 
current tests with portable devices also incur high expenses 
when performed repeatedly [3]. 

Recently, multiple smartphone applications have been devel-
oped to prescreen snoring or OSA [4,5]. They can be easily 
downloaded and used in open application online markets. Dur-
ing sleep, various signals are continuously produced by the body 
that may be used for prediction of OSA severity; these signals 
include respiratory sounds, such as silent or loud breathing 
sounds, regular or irregular breathing sounds, snoring, gasping, 
and cessation of breathing sound. Respiratory sounds during 
sleep can be easily recorded by using microphones embedded in 
most currently available smartphones. However, their perfor-
mance and accuracy have rarely been compared and tested 
through simultaneous studies with polysomnography. 

In the present study, we extracted a large volume of audio 
features from sleep breathing sounds recorded during full-night 
polysomnography, in which respiratory sound signals were per-
fectly synchronized with other body signals in the polysomno-
graphic data set. The current study was performed to develop al-
gorithms for prescreening of OSA with a large set of audio fea-
tures and evaluate their performances in comparison with the 
results based on polysomnography.

MATERIALS AND METHODS

Study participants and polysomnography
Patients with habitual snoring, with or without witnessed apnea, 
who underwent attended, in-laboratory, full-night polysomnog-
raphy at a sleep center of a tertiary hospital between October 
2013 and March 2014, were included in this study. Patients were 
excluded if they had central sleep apnea, neurological disorders, 
neuromuscular disease, heart failure, or any other critical medi-
cal condition. Polysomnography (Embla N 7000, Reykjavik, Ice-

land) included electroencephalography, electrooculography, chin 
and limb electromyography, electrocardiography, nasal pressure 
transducer, thermistor, chest and abdomen respiratory induc-
tance plethysmography, and pulse oximetry. OSA and hypopnea 
were defined as previously described [6]: apnea was defined as 
cessation of airflow for at least 10 seconds, while hypopnea was 
defined as a >50% decrease in airflow for at least 10 seconds 
or a moderate reduction in airflow for at least 10 seconds asso-
ciated with arousals or oxygen desaturation (<4%) [7]. AHI was 
defined as the total number of apneas and hypopneas per sleep 
hour. Written informed consent was obtained before enrollment 
and the study protocol was approved by the Institutional Re-
view Board of Seoul National University Bundang Hospital (IRB 
No. B-1404/248-109). 

Collection and preprocessing of sleep breathing sounds
For all patients, audio recordings were performed throughout 
the night of polysomnography by using an air-conduction micro-
phone (SURP-102; Yianda Electronics, Shenzhen, China) linked 
to a video recorder, which was placed 1.7 m above the patient’s 
bed, near the ceiling (Fig. 1). Respiratory sounds recorded 

   Analyses included respiratory sounds from all sleep stages, in-
cluding N1, N2, N3, rapid eye movement, and waking.

   We analyzed quite many patient sounds simultaneously re-
corded with polysomnography.

   Our binary classifier predicted patients with apnea hypopnea 
index of ≥15 with sensitivity and specificity of >80% by us-
ing respiratory sounds during sleep.
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Fig. 1. A bed for polysomnography and a microphone (inset) on the 
ceiling. 
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throughout the sleep time were used for analyses. Analyses were 
performed by using audio data from all sleep stages comprising 
stage N1 sleep, stage N2 sleep, stage N3 sleep, rapid eye move-
ment sleep, and waking, from sleep onset to sleep offset. Audio 
data from each patient were converted into a wave format file 
with an 8-kHz sampling frequency by using FFmpeg, which is a 
free software for handling multimedia data [8]. Noise reduction 
was conducted for preprocessing with a spectral subtraction 
method [8]. 

Extraction of audio features
To extract audio features that describe the characteristics of re-
spiratory sounds and can be used for prediction of OSA, full-
length, de-noised audio data of each patient were segmented 
into 5-s window signals and a large set of audio features was ex-
tracted from those 5-s window signals by using jAudio, a Java-
based audio feature extraction software. The audio feature ex-
traction framework is summarized in Fig. 2.

Prediction of OSA 
Prediction of OSA, based on breathing sounds during sleep 

time, was performed with a simple logistic regression model. To 
establish and validate prediction models, or classifiers, 10-fold 
cross-validation was used. Enrolled patients were randomly di-
vided into 10 equal-sized subgroups. Of the 10 subgroups, a sin-
gle subgroup was retained for validation of the prediction mod-
el; the remaining nine subgroups were used for training. The 
cross-validation process was then repeated 10 times (10 folds), 
with each of the 10 subgroups used once for validation. This gives 
10 evaluation results, which are averaged. Then learning algo-
rithm was then invoked a final (11th) time on the entire dataset 
to obtain the final model [9]. Model performance measures, such 
as accuracy, sensitivity, specificity, positive predictive value (PPV, 
precision), negative predictive value (NPV), and area under the 
curve (AUC) of the receiver operating characteristic, were com-
puted for each fold. Binary classifications were conducted for 
three different threshold criteria at AHI of 5, 15, or 30; predic-
tion models (classifiers) were separately established for each 
threshold. Machine learning was performed with a free soft-
ware, Weka [9]. Other statistical analyses were performed by us-
ing IBM SPSS ver. 22.0 (IBM Corp., Armonk, NY, USA). Results 
are presented as mean±standard deviation.

Fig. 2. Study framework. Sound data were acquired, followed by noise cancelling, and feature selection. From these inputs and with labeled 
result from the polysomnography of the same patient, machine learning had been performed. OSA, obstructive sleep apnea; PPV, positive 
predictive value; NPV, negative predictive value. 
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RESULTS

General characteristics and polysomnographic findings
A total of 116 subjects (78 men and 38 women) with a mean 
age of 50.4±16.7 years were included in the present study. 
Their mean body mass index was 25.5±3.9 kg/m2, and the 
mean AHI was 23.0±24.0/hr. The numbers of subjects with AHI 
<5, 5≤ AHI <15, 15≤ AHI <30, and AHI ≥30 were 28, 28, 
30, and 30, respectively. Their characteristics, according to OSA 
severity, are summarized in Table 1. The mean total sleep time 
between sleep onset and offset was 369.7±104.8 minutes.

Characteristics of sound-associated features
The mean number of 5-s windows from the respiratory sounds 
recorded during total sleep time was 4,436.8±1,258.4 per pa-
tient. A total of 508 audio features were extracted from those 
windows using the jAudio software. The representative features 
were beat histogram, area method of moments, Mel frequency 
cepstral coefficient (MFCC), linear predictive coding, area meth-
od of moments of constant Q-based MFCCs, area method of 
moments of log of constant Q transform, area method of mo-
ments of MFCCs, and method of moments (Table 2).

Performance of binary classifiers for OSA
When the AHI threshold for binary classification was defined as 
5, 15, and 30, the numbers of subjects whose OSA severity was 
accurately predicted was 96 (82.7%; Cohen’s kappa coefficient 
(κ)=0.54, 95% confidence interval [CI], 0.36 to 0.72), 98 (84.4%; 
κ=0.69; 95% CI, 0.51 to 0.87), and 99 (85.3%; κ=0.59; 95% 
CI, 0.41 to 0.77), respectively, out of 116 subjects. 

When the AHI threshold criterion was 5, 88 subjects had mild 
to severe OSA with AHI ≥5. The sensitivity and specificity of 
the prediction model (classifier) at AHI of 5 were 87.5% (95% 
CI, 78.3% to 93.3%) and 67.8% (95% CI, 47.6% to 83.4%), 
respectively. The PPV (precision) and NPV were 89.5% (95% 
CI, 80.6% to 94.8%) and 63.3% (95% CI, 46.9% to 79.5%), 
respectively. When the AHI threshold was 15, 60 subjects had 
moderate to severe OSA with AHI ≥15, based on polysomnog-
raphy. The sensitivity and specificity of the binary classifier at 
AHI of 15 were 81.6% (95% CI, 69.1% to 90.1%) and 87.5% 
(95% CI, 75.3% to 94.4%), respectively. The PPV and NPV 
were 87.5% (95% CI, 75.3% to 94.4%) and 81.6% (95% CI, 

69.1% to 90.1%), respectively. When the AHI threshold was 30, 
30 patients had polysomnographic severe OSA with AHI ≥30. 
The sensitivity and specificity of the binary classifier at AHI of 
30 was 60% (95% CI, 40.7% to 76.8%) and 94.1% (95% CI, 
86.3% to 97.8%), respectively. The PPV and NPV were 78.2% 
(95% CI, 55.8% to 91.7%) and 87% (95% CI, 78.2% to 92.9%), 
respectively. Average AUCs were 0.83, 0.901, and 0.91, when the 
prediction models of binary classifications were tested for differ-
ent cut-off values at AHI of 5, 15, and 30, respectively. The re-
sults are summarized in Fig. 3.

DISCUSSION

The purpose of this study was to analyze all respiratory sounds 
occurring between sleep onset and offset based on polysomnog-
raphy and then predict OSA by using respiratory sounds from 
patients during sleep time. More than 500 variables, or features, 
that were extracted from the breathing sounds were used to de-
velop a classifier (i.e., an OSA-predicting machine learning algo-
rithm).

We evaluated binary classifiers that were trained to classify 

Table 2. Features extracted from respiratory sounds during sleep

Name of feature
No. of derived 

features

Beat histogram 172
Area method of moments & derivative 100
Mel frequency cepstral coefficient & derivative  52
Linear predictive coding & derivative  40
Area method of moments of constant Q-based Mel  

frequency cepstral coefficients
 20

Area method of moments of log of constant Q transform  20
Area method of moments of Mel frequency cepstral  

coefficients
 20

Method of moments & derivative  20
Beat sum & derivative   4
Compactness & derivative   4
Fraction of low energy windows & derivative   4
Peak-based spectral smoothness & derivative   4
Relative difference function & derivative   4
Root mean square & derivative   4
Spectral centroid & derivative   4
Spectral flux & derivative   4
Spectral rolloff point & derivative   4
Spectral variability & derivative   4
Strength of strongest beat & derivative   4
Strongest beat & derivative   4
Strongest frequency via fast fourier transform maximum 

& derivative
  4

Strongest frequency via spectral centroid & derivative   4
Strongest frequency via zero crossings & derivative   4
Zero crossings & derivative   4
Total number of features 508

Table 1. General and polysomnographic characteristics

Variable
AHI<5 
(n=28)

5≤AHI<15 
(n=28)

15≤AHI<30 
(n=30)

AHI ≥30 
(n=30)

Age (yr) 43.2 54.0 53.9 50.3
Male:female 10:18 18:10 24:6 26:4
Body mass index (kg/m2) 23.1 24.6 26.9 27.3
AHI (/hr) 1.1 8.9 22.0 57.5

AHI, apnea hypopnea index. 
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patients into two groups. The binary classifier for AHI of 5 had 
the lowest specificity, while the classifier for AHI of 30 had the 
lowest sensitivity and lowest precision (PPV); accuracies of the 
three classifiers were similar. Cohen’s kappa coefficient, which 
measures interrater agreement for categorical values, was high-
est when the cutoff value of AHI was set at 15. Therefore, the 
best performance of the OSA prediction algorithm with record-
ed respiratory sounds during sleeping time was observed when 
AHI of 15 was the classification cutoff. 

Thus far, few studies have been performed with sounds that 
were generated during sleep, especially involving machine learn-
ing techniques; most studies have been conducted with a small 
number of patients [10-13]. Previous studies mainly focused on 
analyzing the characteristics of snoring, or distinguishing snor-
ing from non-snoring sounds. One study reported that the clas-
sification performance of human visual scorers and a machine 
learning algorithm was similar in terms of automatically identi-
fying snoring; this study used a support vector machine, which 
is a machine learning technique [14]. There have also been stud-
ies that used analysis of snoring sounds to predict the anatomi-
cal location in the upper airway where the snoring sounds were 
generated [15-17]. However, analyses in these studies were lim-
ited to only a short period of time, drug-induced sleep. Another 
study used neural network analysis to separate snoring from 
non-snoring segments; this study also analyzed only breathing 
sounds from the trachea, and was performed in very few pa-
tients (<10) [18]. Another study of the trachea respiratory 
sound was performed in 147 awake patients; it reported that 
prediction based on breathing sounds was superior to that based 
on anthropometric features in predicting polysomnographic AHI 
of ≥10 [19]. However, it differs from our study in that sounds 
were recorded when the patients were awake. A further study 

attempted to distinguish apneas from hypopneas by using audio 
signals. When all 2,015 apneas or hypopneas were analyzed, the 
accuracy was approximately 84.7%, which suggests the possibil-
ity of estimating apnea or hypopnea separately. However, con-
sidering that automatic detection of apneas and hypopneas has 
not been validated to estimate AHI as a measurement of OSA 
severity extracted by human scorers, further studies are needed 
for automation [20]. We have previously conducted studies to 
predict the severity of OSA by analyzing breathing sounds dur-
ing sleep with machine and deep learning methods [8,21]. Al-
though our previous studies used respiratory sounds during 
sleeping time, they were limited in that only N2 and N3 stages 
were included for analysis. Therefore, the present study is distin-
guished from our previous studies in that we tested prediction 
algorithm models in all sleep stages, including N1, N2, N3, rapid 
eye movement, and waking stages, between sleep onset and off-
set. Classifiers should be as simple and accurate as possible in 
predicting OSA. For this purpose, it is important to use the 
sounds of all sleep stages without any identification and/or sep-
aration of sleep stages. 

The development of OSA prediction algorithms may be im-
portant in many respects. First, if predictive models are proven 
to have a certain level of performance, more patients will have 
the opportunity to prescreen their own OSA. In practice, con-
sidering the limitations of conventional polysomnography, many 
patients with OSA are underdiagnosed, despite its high preva-
lence (26% in middle-aged men) [22]. Individuals with repeti-
tive snoring, daytime sleepiness, or poor sleep quality without 
definite OSA must now travel to the hospital for polysomnogra-
phy. Regarding ambulatory home monitoring devices, there is a 
limitation (similar to polysomnography) in that symptomatic pa-
tients must first visit hospitals equipped with the appropriate 
devices. Second, the prediction algorithm tested in our study is 
an important contribution because most people currently use 
smartphones. Notably, smartphones have a sound recording 
function, which may enable prescreening of OSA [23]. Third, 
this type of prediction algorithm can be used for repetitive tests 
without economic or spatial burden. Therefore, given the night-
to-night variability of OSA [24], it is useful to evaluate the aver-
age sleep state for an extended period of time, and to regularly 
monitor the effects of operation or intraoral devices. Fourth, this 
research may motivate more OSA patients to visit hospitals, 
thereby increasing the likelihood that they will undergo poly-
somnography and start treatment at the appropriate time. Since 
the risk of multi-organ diseases, such as cardiovascular, neuro-
vascular, and metabolic diseases, may be reduced by early treat-
ment of OSA, their social and economic burdens may decrease 
[25]. 

Our research also has several limitations. To be utilized in per-
sonal mobile devices, it is necessary to use the sound recorded 
from smartphones. While we have been able to synchronize 
polysomnography to determine sleep onset and offset, these 

Fig. 3. Sensitivity, specificity, positive predictive value (PPV), nega-
tive predictive value (NPV), and accuracy of binary classifiers at ap-
nea hypopnea index (AHI) of 5, 15, and 30 for prescreening of ob-
structive sleep apnea. 
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may be incorrectly determined when measured at home with a 
smartphone. Since the algorithm that we tested was a binary 
classifier, we could not distinguish the degree of OSA severity in 
detail. Overall performance was acceptable; however, it should 
be further increased. There may be several reasons for this, in-
cluding inter-person variability of breathing sounds during sleep. 
The performance of the classifier may be improved by including 
more patients in future analyses. In addition, it is possible to de-
velop algorithms that can predict apnea or hypopnea, as well as 
the severity of OSA. This study was based on a single session of 
polysomnography in each patient; therefore, it is also necessary 
to evaluate night-to-night variability of breathing sounds during 
sleep. Further, sound acquisition from the microphones of com-
mercial smartphones, placed at the bedside, which is closer to 
real-world usage, must be also validated. 

In conclusion, our binary classifier predicted patients with 
AHI of ≥15 with sensitivity and specificity of >80% by using 
respiratory sounds during sleep. Our study has strength in that it 
used data recorded in synchronization with polysomnography 
during actual sleep time. In addition, since our prediction model 
included all sleep stage data between sleep onset and offset, 
prediction classifiers based on respiratory sounds may have high 
future value as prescreening algorithms for OSA that can be 
used in personal mobile devices. Although our study used a 
large volume of patient data to diagnose OSA based on respira-
tory sounds, further studies with additional patients are needed 
to improve the performance of prediction algorithms.

CONFLICT OF INTEREST

No potential conflict of interest relevant to this article was re-
ported.

ACKNOWLEDGMENTS

This research was partly supported by the Bio and Medical Tech-
nology Development Program of the National Research Foun-
dation (NRF) funded by the Korean Government, Ministry of 
Science and ICT, Sejong, Republic of Korea (NRF-2015M3A9-
D7066980, NRF-2015M3A9D7066972).

REFERENCES

1. Xie C, Zhu R, Tian Y, Wang K. Association of obstructive sleep ap-
noea with the risk of vascular outcomes and all-cause mortality: a 
meta-analysis. BMJ Open. 2017 Dec;7(12):e013983.

2. Peppard PE, Young T, Barnet JH, Palta M, Hagen EW, Hla KM. In-
creased prevalence of sleep-disordered breathing in adults. Am J 
Epidemiol. 2013 May;177(9):1006-14.

3. Ahmed M, Patel NP, Rosen I. Portable monitors in the diagnosis of 

obstructive sleep apnea. Chest. 2007 Nov;132(5):1672-7.
4. Ong AA, Gillespie MB. Overview of smartphone applications for 

sleep analysis. World J Otorhinolaryngol Head Neck Surg. 2016 
Mar;2(1):45-9.

5. Camacho M, Robertson M, Abdullatif J, Certal V, Kram YA, Ruoff 
CM, et al. Smartphone apps for snoring. J Laryngol Otol. 2015 Oct; 
129(10):974-9.

6. Jung HJ, Wee JH, Rhee CS, Kim JW. Full-night measurement of level 
of obstruction in sleep apnea utilizing continuous manometry. La-
ryngoscope. 2017 Dec;127(12):2897-902.

7. Sleep-related breathing disorders in adults: recommendations for 
syndrome definition and measurement techniques in clinical re-
search. The Report of an American Academy of Sleep Medicine Task 
Force. Sleep. 1999 Aug;22(5):667-89.

8. Kim J, Kim T, Lee D, Kim JW, Lee K. Exploiting temporal and non-
stationary features in breathing sound analysis for multiple obstruc-
tive sleep apnea severity classification. Biomed Eng Online. 2017 
Jan;16(1):6.

9. Frank E, Hall MA, Witten IH. The Weka Workbench. Online appendix 
for “data mining: practical machine learning tools and techniques”. 
4th ed. Burlington (NJ): Morgan Kaufmann; 2016.

10. Emoto T, Kashihara M, Abeyratne UR, Kawata I, Jinnouchi O, Aku-
tagawa M, et al. Signal shape feature for automatic snore and breath-
ing sounds classification. Physiol Meas. 2014 Dec;35(12):2489-99.

11. Sun X, Kim JY, Won Y, Kim JJ, Kim KA. Efficient snoring and breath-
ing detection based on sub-band spectral statistics. Biomed Mater 
Eng. 2015;26 Suppl 1:S787-93.

12. Nguyen TL, Won Y. Sleep snoring detection using multi-layer neural 
networks. Biomed Mater Eng. 2015;26 Suppl 1:S1749-55.

13. Janott C, Schuller B, Heiser C. Acoustic information in snoring nois-
es. HNO. 2017 Feb;65(2):107-16.

14. Samuelsson LB, Rangarajan AA, Shimada K, Krafty RT, Buysse DJ, 
Strollo PJ, et al. Support vector machines for automated snoring de-
tection: proof-of-concept. Sleep Breath. 2017 Mar;21(1):119-33.

15. Koo SK, Kwon SB, Kim YJ, Moon JI, Kim YJ, Jung SH. Acoustic 
analysis of snoring sounds recorded with a smartphone according to 
obstruction site in OSAS patients. Eur Arch Otorhinolaryngol. 2017 
Mar;274(3):1735-40.

16. Qian K, Janott C, Pandit V, Zhang Z, Heiser C, Hohenhorst W, et al. 
Classification of the excitation location of snore sounds in the upper 
airway by acoustic multifeature analysis. IEEE Trans Biomed Eng. 
2017 Aug;64(8):1731-41.

17. Janott C, Schmitt M, Zhang Y, Qian K, Pandit V, Zhang Z, et al. Snor-
ing classified: The Munich-Passau Snore Sound Corpus. Comput Biol 
Med. 2018 Mar;94:106-18.

18. Shokrollahi M, Saha S, Hadi P, Rudzicz F, Yadollahi A. Snoring sound 
classification from respiratory signal. Conf Proc IEEE Eng Med Biol 
Soc. 2016 Aug;2016:3215-8.

19. Elwali A, Moussavi Z. Obstructive sleep apnea screening and airway 
structure characterization during wakefulness using tracheal breath-
ing sounds. Ann Biomed Eng. 2017 Mar;45(3):839-50.

20. Halevi M, Dafna E, Tarasiuk A, Zigel Y. Can we discriminate between 
apnea and hypopnea using audio signals? Conf Proc IEEE Eng Med 
Biol Soc. 2016 Aug;2016:3211-4.

21. Kim T, Kim JW, Lee K. Detection of sleep disordered breathing se-
verity using acoustic biomarker and machine learning techniques. 
Biomed Eng Online. 2018 Feb;17(1):16.

22. Erdenebayar U, Park JU, Jeong P, Lee KJ. Obstructive sleep apnea 
screening using a piezo-electric sensor. J Korean Med Sci. 2017 Jun; 
32(6):893-9.

23. Saeb S, Cybulski TR, Schueller SM, Kording KP, Mohr DC. Scalable 
passive sleep monitoring using mobile phones: opportunities and 
obstacles. J Med Internet Res. 2017 Apr;19(4):e118.

24. White LH, Lyons OD, Yadollahi A, Ryan CM, Bradley TD. Night-to-



78    Clinical and Experimental Otorhinolaryngology    Vol. 12, No. 1: 72-78, February 2019

night variability in obstructive sleep apnea severity: relationship to 
overnight rostral fluid shift. J Clin Sleep Med. 2015 Jan;11(2):149-
56.

25. Deacon NL, Jen R, Li Y, Malhotra A. Treatment of obstructive sleep 
apnea: prospects for personalized combined modality therapy. Ann 
Am Thorac Soc. 2016 Jan;13(1):101-8.


