10 research outputs found

    Adaptive Broadcasting Method Using Neighbor Type Information in Wireless Sensor Networks

    Get PDF
    Flooding is the simplest and most effective way to disseminate a packet to all nodes in a wireless sensor network (WSN). However, basic flooding makes all nodes transmit the packet at least once, resulting in the broadcast storm problem in a worst case, and in turn, network resources are severely wasted. Particularly, power is the most valuable resource of WSNs as nodes are powered by batteries, then the waste of energy by the basic flooding lessens the lifetime of WSNs. In order to solve the broadcast storm problem, this paper proposes a dynamic probabilistic flooding that utilizes the neighbor information like the numbers of child and sibling nodes. In general, the more sibling nodes there are, the higher is the probability that a broadcast packet may be sent by one of the sibling nodes. The packet is not retransmitted by itself, though. Meanwhile, if a node has many child nodes its retransmission probability should be high to achieve the high packet delivery ratio. Therefore, these two termsā€”the numbers of child and sibling nodesā€”are adopted in the proposed method in order to attain more reliable flooding. The proposed method also adopts the back-off delay scheme to avoid collisions between close neighbors. Simulation results prove that the proposed method outperforms previous flooding methods in respect of the number of duplicate packets and packet delivery ratio

    Adaptive Broadcasting Method Using Neighbor Type Information in Wireless Sensor Networks

    No full text
    Flooding is the simplest and most effective way to disseminate a packet to all nodes in a wireless sensor network (WSN). However, basic flooding makes all nodes transmit the packet at least once, resulting in the broadcast storm problem in a worst case, and in turn, network resources are severely wasted. Particularly, power is the most valuable resource of WSNs as nodes are powered by batteries, then the waste of energy by the basic flooding lessens the lifetime of WSNs. In order to solve the broadcast storm problem, this paper proposes a dynamic probabilistic flooding that utilizes the neighbor information like the numbers of child and sibling nodes. In general, the more sibling nodes there are, the higher is the probability that a broadcast packet may be sent by one of the sibling nodes. The packet is not retransmitted by itself, though. Meanwhile, if a node has many child nodes its retransmission probability should be high to achieve the high packet delivery ratio. Therefore, these two termsā€”the numbers of child and sibling nodesā€”are adopted in the proposed method in order to attain more reliable flooding. The proposed method also adopts the back-off delay scheme to avoid collisions between close neighbors. Simulation results prove that the proposed method outperforms previous flooding methods in respect of the number of duplicate packets and packet delivery ratio

    Laminarin-Derived from Brown Algae Suppresses the Growth of Ovarian Cancer Cells via Mitochondrial Dysfunction and ER Stress

    No full text
    Ovarian cancer (OC) is difficult to diagnose at an early stage and leads to the high mortality rate reported in the United States. Standard treatment for OC includes maximal cytoreductive surgery followed by platinum-based chemotherapy. However, relapse due to chemoresistance is common in advanced OC patients. Therefore, it is necessary to develop new anticancer drugs to suppress OC progression. Recently, the anticancer effects of laminarin, a beta-1,3-glucan derived from brown algae, have been reported in hepatocellular carcinoma, colon cancer, leukemia, and melanoma. However, its effects in OC are not reported. We confirmed that laminarin decreases cell growth and cell cycle progression of OC cells through the regulation of intracellular signaling. Moreover, laminarin induced cell death through DNA fragmentation, reactive oxygen species generation, induction of apoptotic signals and endoplasmic reticulum (ER) stress, regulation of calcium levels, and alteration of the ER-mitochondria axis. Laminarin was not cytotoxic in a zebrafish model, while in a zebrafish xenograft model, it inhibited OC cell growth. These results suggest that laminarin may be successfully used as a novel OC suppressor

    Reactive Disperse Dyes Bearing Various Blocked Isocyanate Groups for Digital Textile Printing Ink

    No full text
    Wastewater management is of considerable economic and environmental importance for the dyeing industry. Digital textile printing (DTP), which is based on sublimation transfer and does not generate wastewater, is currently being explored as an inkjet-based method of printing colorants onto fabric. It finds wide industrial applications with most poly(ethylene terephthalate) (PET) and nylon fibers. However, for additional industrial applications, it is necessary to use natural fibers, such as cotton. Therefore, to expand the applicability of DTP, it is essential to develop a novel reactive disperse dye that can interact with the fabric. In this study, we introduced a blocked isocyanate functional group into the dye to enhance binding to the fabric. The effect of sublimation transfer on fabrics as a function of temperature was compared using the newly synthesized reactive disperse dyes with different blocking groups based on pyrazole derivatives, such as pyrazole (Py), di-methylpyrazole (DMPy), and di-tert-butylpyrazole (DtBPy). Fabrics coated with the new reactive disperse dyes, including PET, nylon, and cotton, were printed at 190 Ā°C, 200 Ā°C, and 210 Ā°C using thermal transfer equipment. In the case of the synthesized DHP-A dye on cotton at 210 Ā°C, the color strength was 2.1, which was higher than that of commercial dyes and other synthesized dyes, such as DMP-A and DTP-A. The fastness values of the synthesized DHP-A were measured on cotton, and it was found that the washing and light fastness values on cotton are higher than those of commercial dyes. This study confirmed the possibility of introducing isocyanate groups into reactive disperse dyes

    Dual crosslinking polymer networks: Correlation between polymer topologies and self-healing efficiency

    No full text
    The topologies of polymers can impact the performance of polymeric materials, including their chemical and physical properties. In this work, a dynamic covalent bond of boronate ester was introduced by the addition of 4-vinylphenylboronic acid to the rich hydroxyl groups of polyglycidols (PGs) with different topologies, including branched cyclic, hyperbranched, and linear PGs. The formation of the dual crosslinked polymer networks, which consisted of dynamic covalent bonds (B???O) and static covalent bonds, was confirmed by thermogravimetric analysis and a swelling test. In addition, the mechanical properties of the cured materials were evaluated using a rheometer, dynamic mechanical analysis, and nanoindentation. Scratch tests and tensile tests were used to determine the self-healing effectiveness of polymer topologies. Intriguingly, based on the polymer topologies, the crosslinked network with a branched cyclic structure (bc-cPGB) exhibited a greater self-healing efficiency and modulus than hyperbranched networks (hb-cPGB). These findings indicate that the physical properties of polymer networks are influenced by the network mesh space and preferred intermolecular crosslinking of the branched cyclic structure. In addition, to maximize the benefits of the dual crosslinking system, the dynamic B???O bonds were utilized for recycling cured materials, and the PG prepolymer was successfully recovered from cPGB by adding pinacol to THF with a yield of 99.5%. These findings demonstrate the significance of topology control in highly adaptable advanced functional materials

    Design of Topology???Controlled Polyethers toward Robust Cooperative Hydrogen Bonding

    No full text
    Topology control of polymers is critical for determining their physical properties and potential applications; in particular, topologies that incorporate numerous hydrogen bonding (H-bonding) donors and acceptors along the polymer chains considerably influence the formation of different inter- and intramolecular H-bonding motifs. In this study, the high-level control of inter- and intramolecular H-bonding is investigated in topology-controlled poly(glycidoxy carbonyl benzoic acid)s (PGCs). Three types of topology-controlled PGCs (i.e., linear, hyperbranched, and branched cyclic structures having a similar degree of polymerization) are prepared by introducing aromatic carboxylic acids into the corresponding polyglycidols (PGs) via quantitative post-polymerization modification with phthalic anhydride. The obtained three types of PGCs demonstrated the high-level interplay between the inter- and intramolecular H-bonding in polymer chains by exhibiting the pH-dependent self-association properties in the solution state and the strong adhesion properties in the bulk state with high transparency. Interestingly, the dramatically enhanced adhesive property by 2.6-fold is demonstrated by simple mixing of branched cyclic PGC and topology-controlled PGs to promote the cooperative H-bonding between polymer chains. The new class of cooperative H-bonding is anticipated between topology-controlled polymers to contribute to the development of advanced adhesive and the high potential in biological and biomedical applications due to its excellent biocompatibility

    NIR-Triggered High-Efficiency Self-Healable Protective Optical Coating for Vision Systems

    No full text
    Recently, self-healing materials have evolved to recover specific functions such as electronic, magnetic, acoustic, structural or hierarchical, and biological properties. In particular, the development of self-healing protection coatings that can be applied to lens components in vision systems such as augmented reality glasses, actuators, and image and time-of-flight sensors has received intensive attention from the industry. In the present study, we designed polythiourethane dynamic networks containing a photothermal N-butyl-substituted diimmonium borate dye to demonstrate their potential applications in self-healing protection coatings for the optical components of vision systems. The optimized self-healing coating exhibited a high transmittance (āˆ¼95% in the visible-light region), tunable refractive index (up to 1.6), a moderate Abbe number (āˆ¼35), and high surface hardness (>200 MPa). When subjected to near-infrared (NIR) radiation (1064 nm), the surface temperature of the coating increased to 75 Ā°C via the photothermal effect and self-healing of the scratched coatings occurred via a dynamic thiourethane exchange reaction. The coating was applied to a lens protector, and its self-healing performance was demonstrated. The light signal distorted by the scratched surface of the coating was perfectly restored after NIR-induced self-healing. The photoinduced self-healing process can also autonomously occur under sunlight with low energy consumption

    NIR-Triggered High-Efficiency Self-Healable Protective Optical Coating for Vision Systems

    No full text
    Recently, self-healing materials have evolved to recover specific functions such as electronic, magnetic, acoustic, structural or hierarchical, and biological properties. In particular, the development of self-healing protection coatings that can be applied to lens components in vision systems such as augmented reality glasses, actuators, and image and time-of-flight sensors has received intensive attention from the industry. In the present study, we designed polythiourethane dynamic networks containing a photothermal N-butyl-substituted diimmonium borate dye to demonstrate their potential applications in self-healing protection coatings for the optical components of vision systems. The optimized self-healing coating exhibited a high transmittance (āˆ¼95% in the visible-light region), tunable refractive index (up to 1.6), a moderate Abbe number (āˆ¼35), and high surface hardness (>200 MPa). When subjected to near-infrared (NIR) radiation (1064 nm), the surface temperature of the coating increased to 75 Ā°C via the photothermal effect and self-healing of the scratched coatings occurred via a dynamic thiourethane exchange reaction. The coating was applied to a lens protector, and its self-healing performance was demonstrated. The light signal distorted by the scratched surface of the coating was perfectly restored after NIR-induced self-healing. The photoinduced self-healing process can also autonomously occur under sunlight with low energy consumption
    corecore