5,071 research outputs found

    Improvements in estimating proportions of objects from multispectral data

    Get PDF
    Methods for estimating proportions of objects and materials imaged within the instantaneous field of view of a multispectral sensor were developed further. Improvements in the basic proportion estimation algorithm were devised as well as improved alien object detection procedures. Also, a simplified signature set analysis scheme was introduced for determining the adequacy of signature set geometry for satisfactory proportion estimation. Averaging procedures used in conjunction with the mixtures algorithm were examined theoretically and applied to artificially generated multispectral data. A computationally simpler estimator was considered and found unsatisfactory. Experiments conducted to find a suitable procedure for setting the alien object threshold yielded little definitive result. Mixtures procedures were used on a limited amount of ERTS data to estimate wheat proportion in selected areas. Results were unsatisfactory, partly because of the ill-conditioned nature of the pure signature set

    A Visual Turn for Organizational Research: Embodying the Real Subject in Video-Based Ethnography

    Get PDF
    For organizational ethnography we argue that traditional philosophies of onto-epistemological realism be supplanted by interpretive and reflexive thinking to provide fresh theoretical assumptions and new methodological proposals for film- and video-based research. The argument is developed in three phases: First, to establish analytical context, we explore the historical evolution of the ethnographic organizational documentary and discuss habitual problems – methodological, philosophical and technical – filmmakers have faced when claiming qualities of directness and objectivity in their work; that is, through the style of ‘film-truth’. Second, to advance new conceptual logic for video-based organizational research, we supplant the objectivist and realist philosophy underpinning traditional documentary filmmaking with sociologically interpretive and reflexive arguments for undertaking ethnography in organizations, a subjective process which importantly yields greater understanding of affect and embodiment. Finally, to define new methodological opportunities, these interpretive and reflexive arguments are marshalled to underpin a strategy of participatory thinking in video-based organizational ethnography – a ‘withness’ approach facilitating a greater sense of affect and embodiment as well as polyvocal interpretation of visual data; a practice which sees filmmakers, social theorists, participants, and viewers alike united in analytical space

    Polarized light ions and spectator nucleon tagging at EIC

    Full text link
    An Electron-Ion Collider (EIC) with suitable forward detection capabilities would enable a unique experimental program of deep-inelastic scattering (DIS) from polarized light nuclei (deuterium 2H, helium 3He) with spectator nucleon tagging. Such measurements promise significant advances in several key areas of nuclear physics and QCD: (a) neutron spin structure, by using polarized deuterium and eliminating nuclear effects through on-shell extrapolation in the spectator proton momentum; (b) quark/gluon structure of the bound nucleon at x > 0.1 and the dynamical mechanisms acting on it, by measuring the spectator momentum dependence of nuclear structure functions; (c) coherent effects in QCD, by exploring shadowing in tagged DIS on deuterium at x << 0.1. The JLab MEIC design (CM energy sqrt{s} = 15-50 GeV/nucleon, luminosity ~ 10^{34} cm^{-2} s^{-1}) provides polarized deuterium beams and excellent coverage and resolution for forward spectator tagging. We summarize the physics topics, the detector and beam requirements for spectator tagging, and on-going R&D efforts.Comment: 6 pages, 2 figures. Prepared for proceedings of DIS 2014, XXII. International Workshop on Deep-Inelastic Scattering and Related Subjects, University of Warsaw, Poland, April 28 - May 2, 201

    Southern high-latitude Digisonde observations of ionosphere E-region Bragg scatter during intense lacuna conditions

    No full text
    International audienceDuring summer months at solar cycle minimum, F-region lacuna and slant-Es conditions (SEC) are common features of daytime ionograms recorded around local magnetic noon at Casey, Antarctica. Digisonde measurements of drift velocity height profiles show that the occurrence of lacuna prevents the determination of F-region drift velocities and also affects E-region drift velocity measurements. Unique E-region spectral features revealed as intervals of Bragg scatter superimposed on typical background E-region reflection were observed in Digisonde Doppler spectra during intense lacuna conditions. Daytime E-region Doppler spectra recorded at carrier frequencies from 1.5 to 2.7MHz, below the E-region critical frequency foE, have two side-peaks corresponding to Bragg scatter at approximately ±1-2Hz symmetrically located on each side of a central-peak corresponding to near-zenith total reflections. Angle-of-arrival information and ray-tracing simulations show that echo returns are coming from oblique directions most likely resulting from direct backscatter from just below the total reflection height for each sounding frequency. The Bragg backscatter events are shown to manifest during polar lacuna conditions, and to affect the determination of E-region background drift velocities, and as such must be considered when using standard Doppler-sorted interferometry (DSI) techniques to estimate ionospheric drift velocities. Given the Doppler and spatial separation of the echoes determined from high-resolution Doppler measurements, we are able to estimate the Bragg scatter phase velocity independently from the bulk E-region motion. The phase velocity coincides with the ExB direction derived from in situ fluxgate magnetometer records. When ionospheric refraction is considered, the phase velocity amplitudes deduced from DSI are comparable to the ion-acoustic speed expected in the E-region. We briefly consider the plausibility that these previously unreported polar cap E-region Bragg scatter Doppler spectral signatures, observed at Casey in December 1996 during SEC/lacuna conditions may be linked to ionosphere irregularities. These irregularities may possibly be generated by primary plasma waves triggered by current-driven instabilities, that is to say, a hybrid of the "modified two-stream" and "gradient drift" instability mechanisms

    Neutron spin structure with polarized deuterons and spectator proton tagging at EIC

    Get PDF
    The neutron's deep-inelastic structure functions provide essential information for the flavor separation of the nucleon parton densities, the nucleon spin decomposition, and precision studies of QCD phenomena in the flavor-singlet and nonsinglet sectors. Traditional inclusive measurements on nuclear targets are limited by dilution from scattering on protons, Fermi motion and binding effects, final-state interactions, and nuclear shadowing at x << 0.1. An Electron-Ion Collider (EIC) would enable next-generation measurements of neutron structure with polarized deuteron beams and detection of forward-moving spectator protons over a wide range of recoil momenta (0 < p_R < several 100 MeV in the nucleus rest frame). The free neutron structure functions could be obtained by extrapolating the measured recoil momentum distributions to the on-shell point. The method eliminates nuclear modifications and can be applied to polarized scattering, as well as to semi-inclusive and exclusive final states. We review the prospects for neutron structure measurements with spectator tagging at EIC, the status of R&D efforts, and the accelerator and detector requirements.Comment: 11 pages, 3 figures. To appear in proceedings of Tensor Polarized Solid Target Workshop, Jefferson Lab, March 10-12, 201

    Sports mega-events – three sites of contemporary political contestation

    Get PDF
    This article discusses the contemporary politics of sports mega-events, involving the Olympic Games and FĂ©dĂ©ration Internationale de Football Association (FIFA) Men’s Football World Cup Finals as well as other lower ‘order’ sports megas, taking two main forms: the promotional and the protest. There is a politics in, and a politics of, sports mega-events. The former focuses on the internal politics of the organizing bodies, such as the International Olympic Committee and FIFA. This form of politics has been written about elsewhere, and hence, there is no detailed discussion in this article about it. Instead this article offers a brief discussion of the range and number of sports mega-events since 2000, an assessment of the contemporary politics of sports mega-events, a focus on three main sites of political contestation – rights, legacy and labour, and finally, it offers conclusions about research into the politics of sports mega-events

    Investigation of shock waves in explosive blasts using fibre optic pressure sensors

    Get PDF
    The published version of this article may be accessed at the link below. Copyright @ IOP Publishing, 2006.We describe miniature all-optical pressure sensors, fabricated by wafer etching techniques, less than 1 mm(2) in overall cross-section with rise times in the mu s regime and pressure ranges typically 900 kPa (9 bar). Their performance is suitable for experimental studies of the pressure-time history for test models exposed to shocks initiated by an explosive charge. The small size and fast response of the sensors promises higher quality data than has been previously available from conventional electrical sensors, with potential improvements to numerical models of blast effects. Results from blast tests are presented in which up to six sensors were multiplexed, embedded within test models in a range of orientations relative to the shock front.Support from the UK Engineering&Physical Sciences Research Council and Dstl Fort Halstead through the MoD Joint Grants Scheme are acknowledged. WN MacPherson is supported by an EPSRC Advanced Research Fellowship

    Coupling online control and inhibitory systems in children with Developmental Coordination Disorder: Goal-directed reaching

    Get PDF
    For children with Developmental Coordination Disorder (DCD), the real-time coupling between frontal executive function and online motor control has not been explored despite reported deficits in each domain. The aim of the present study was to investigate how children with DCD enlist online control under task constraints that compel the need for inhibitory control. A total of 129 school children were sampled from mainstream primary schools. Forty-two children who metre search criteria for DCD were compared with 87 typically developing controls on a modified double-jump reaching task. Children within each skill group were divided into three age bands: younger (6–7years), mid-aged (8–9), and older (10–12). Online control was compared between groups as a function of trial type (non-jump, jump, anti-jump). Overall, results showed that while movement times were similar between skill groups under simple task constraints (non-jump), on perturbation (or jump) trials the DCD group were significantly slower than controls and corrected trajectories later. Critically, the DCD group was further disadvantaged by anti-jump trials where inhibitory control was required; however, this effect reduced with age. While coupling online control and executive systems is not well developed in younger and mid-aged children, there is evidence of age-appropriate coupling in older children. Longitudinal data are needed to clarify this intriguing finding. The theoretical and applied implications of these results are discussed

    Chemical History with a Nuclear Microprobe

    Get PDF
    A nuclear microprobe cannot give direct information on the chemical state of an element, but the spatial distribution of elements in a specimen is often determined by the chemical history of the sample. Fuel cells and minerals are examples of complex systems whose elemental distributions are determined by past chemical history. The distribution of catalyst in used fuel cell electrodes provides direct information on the chemical stability of dispersed catalysts under operating conditions. We have used spatially resolved Rutherford backscattering to measure the migration of platinum and vanadium from intermetallic catalysts and to determine their suitability for use under the extreme operating conditions found in phosphoric acid fuel cells. Geologic materials are complex, heterogeneous samples with small mineral grains. The trace element distribution within the individual mineral grains and between different mineral phases is sensitive to the details of the mineral formation and history. The spatial resolution and sub-100-ppm sensitivity available with a nuclear microprobe open up several new classes of experiments to the geochemist. Geochemistry and electrochemistry are two areas proving particularly fruitful for application of the nuclear microprobe
    • 

    corecore