3,754 research outputs found

    Southern high-latitude Digisonde observations of ionosphere E-region Bragg scatter during intense lacuna conditions

    No full text
    International audienceDuring summer months at solar cycle minimum, F-region lacuna and slant-Es conditions (SEC) are common features of daytime ionograms recorded around local magnetic noon at Casey, Antarctica. Digisonde measurements of drift velocity height profiles show that the occurrence of lacuna prevents the determination of F-region drift velocities and also affects E-region drift velocity measurements. Unique E-region spectral features revealed as intervals of Bragg scatter superimposed on typical background E-region reflection were observed in Digisonde Doppler spectra during intense lacuna conditions. Daytime E-region Doppler spectra recorded at carrier frequencies from 1.5 to 2.7MHz, below the E-region critical frequency foE, have two side-peaks corresponding to Bragg scatter at approximately ±1-2Hz symmetrically located on each side of a central-peak corresponding to near-zenith total reflections. Angle-of-arrival information and ray-tracing simulations show that echo returns are coming from oblique directions most likely resulting from direct backscatter from just below the total reflection height for each sounding frequency. The Bragg backscatter events are shown to manifest during polar lacuna conditions, and to affect the determination of E-region background drift velocities, and as such must be considered when using standard Doppler-sorted interferometry (DSI) techniques to estimate ionospheric drift velocities. Given the Doppler and spatial separation of the echoes determined from high-resolution Doppler measurements, we are able to estimate the Bragg scatter phase velocity independently from the bulk E-region motion. The phase velocity coincides with the ExB direction derived from in situ fluxgate magnetometer records. When ionospheric refraction is considered, the phase velocity amplitudes deduced from DSI are comparable to the ion-acoustic speed expected in the E-region. We briefly consider the plausibility that these previously unreported polar cap E-region Bragg scatter Doppler spectral signatures, observed at Casey in December 1996 during SEC/lacuna conditions may be linked to ionosphere irregularities. These irregularities may possibly be generated by primary plasma waves triggered by current-driven instabilities, that is to say, a hybrid of the "modified two-stream" and "gradient drift" instability mechanisms

    Neutron spin structure with polarized deuterons and spectator proton tagging at EIC

    Get PDF
    The neutron's deep-inelastic structure functions provide essential information for the flavor separation of the nucleon parton densities, the nucleon spin decomposition, and precision studies of QCD phenomena in the flavor-singlet and nonsinglet sectors. Traditional inclusive measurements on nuclear targets are limited by dilution from scattering on protons, Fermi motion and binding effects, final-state interactions, and nuclear shadowing at x << 0.1. An Electron-Ion Collider (EIC) would enable next-generation measurements of neutron structure with polarized deuteron beams and detection of forward-moving spectator protons over a wide range of recoil momenta (0 < p_R < several 100 MeV in the nucleus rest frame). The free neutron structure functions could be obtained by extrapolating the measured recoil momentum distributions to the on-shell point. The method eliminates nuclear modifications and can be applied to polarized scattering, as well as to semi-inclusive and exclusive final states. We review the prospects for neutron structure measurements with spectator tagging at EIC, the status of R&D efforts, and the accelerator and detector requirements.Comment: 11 pages, 3 figures. To appear in proceedings of Tensor Polarized Solid Target Workshop, Jefferson Lab, March 10-12, 201

    Coupling online control and inhibitory systems in children with Developmental Coordination Disorder: Goal-directed reaching

    Get PDF
    For children with Developmental Coordination Disorder (DCD), the real-time coupling between frontal executive function and online motor control has not been explored despite reported deficits in each domain. The aim of the present study was to investigate how children with DCD enlist online control under task constraints that compel the need for inhibitory control. A total of 129 school children were sampled from mainstream primary schools. Forty-two children who metre search criteria for DCD were compared with 87 typically developing controls on a modified double-jump reaching task. Children within each skill group were divided into three age bands: younger (6–7years), mid-aged (8–9), and older (10–12). Online control was compared between groups as a function of trial type (non-jump, jump, anti-jump). Overall, results showed that while movement times were similar between skill groups under simple task constraints (non-jump), on perturbation (or jump) trials the DCD group were significantly slower than controls and corrected trajectories later. Critically, the DCD group was further disadvantaged by anti-jump trials where inhibitory control was required; however, this effect reduced with age. While coupling online control and executive systems is not well developed in younger and mid-aged children, there is evidence of age-appropriate coupling in older children. Longitudinal data are needed to clarify this intriguing finding. The theoretical and applied implications of these results are discussed

    Chemical History with a Nuclear Microprobe

    Get PDF
    A nuclear microprobe cannot give direct information on the chemical state of an element, but the spatial distribution of elements in a specimen is often determined by the chemical history of the sample. Fuel cells and minerals are examples of complex systems whose elemental distributions are determined by past chemical history. The distribution of catalyst in used fuel cell electrodes provides direct information on the chemical stability of dispersed catalysts under operating conditions. We have used spatially resolved Rutherford backscattering to measure the migration of platinum and vanadium from intermetallic catalysts and to determine their suitability for use under the extreme operating conditions found in phosphoric acid fuel cells. Geologic materials are complex, heterogeneous samples with small mineral grains. The trace element distribution within the individual mineral grains and between different mineral phases is sensitive to the details of the mineral formation and history. The spatial resolution and sub-100-ppm sensitivity available with a nuclear microprobe open up several new classes of experiments to the geochemist. Geochemistry and electrochemistry are two areas proving particularly fruitful for application of the nuclear microprobe

    Transition between nuclear and quark-gluon descriptions of hadrons and light nuclei

    Full text link
    We provide a perspective on studies aimed at observing the transition between hadronic and quark-gluonic descriptions of reactions involving light nuclei. We begin by summarizing the results for relatively simple reactions such as the pion form factor and the neutral pion transition form factor as well as that for the nucleon and end with exclusive photoreactions in our simplest nuclei. A particular focus will be on reactions involving the deuteron. It is noted that a firm understanding of these issues is essential for unraveling important structure information from processes such as deeply virtual Compton scattering as well as deeply virtual meson production. The connection to exotic phenomena such as color transparency will be discussed. A number of outstanding challenges will require new experiments at modern facilities on the horizon as well as further theoretical developments.Comment: 37 pages, 17 figures, submitted to Reports on Progress in Physic

    Use of small specimen creep data in component life management: a review

    Get PDF
    Small specimen creep testing techniques are novel mechanical test techniques that have been developed over the past 25 years. They mainly include the sub-size uniaxial test, the small punch creep test, the impression creep test, the small ring creep test and the two-bar creep test. This paper outlines the current methods in practice for data interpretation as well as the state-of-the-art procedures for conducting the tests. Case studies for the use of impression creep testing and material strength ranking of creep resistant steels are reviewed along with the requirement for the standardisation of the impression creep test method. A database of small specimen creep testing is required to prove the validity of the tests

    First Attempt at Spectroscopic Detection of Gravity Modes in a Long-Period Pulsating Subdwarf B Star -- PG 1627+017

    Full text link
    In the first spectroscopic campaign for a PG 1716 variable (or long-period pulsating subdwarf B star), we succeeded in detecting velocity variations due to g-mode pulsations at a level of 1.0-1.5 km/s.The observations were obtained during 40 nights on 2-m class telescopes in Arizona, South Africa,and Australia. The target,PG1627+017, is one of the brightest and largest amplitude stars in its class.It is also the visible component of a post-common envelope binary.Our final radial velocity data set includes 84 hours of time-series spectroscopy over a time baseline of 53 days. Our derived radial velocity amplitude spectrum, after subtracting the orbital motion, shows three potential pulsational modes 3-4 sigma above the mean noise level, at 7201.0s,7014.6s and 7037.3s.Only one of the features is statistically likely to be real,but all three are tantalizingly close to, or a one day alias of, the three strongest periodicities found in the concurrent photometric campaign. We further attempted to detect pulsational variations in the Balmer line amplitudes. The single detected periodicity of 7209 s, although weak, is consistent with theoretical expectations as a function of wavelength.Furthermore, it allows us to rule out a degree index of l= 3 or l= 5 for that mode. Given the extreme weakness of g-mode pulsations in these stars,we conclude that anything beyond simply detecting their presence will require larger telescopes,higher efficiency spectral monitoring over longer time baselines,improved longitude coverage, and increased radial velocity precision.Comment: 39 pages, 9 figures, 4 tables, ApJ accepted. See postscript for full abtrac
    • 

    corecore