94 research outputs found

    Size and composition measurements of background aerosol and new particle growth in a Finnish forest during QUEST 2 using an Aerodyne Aerosol Mass Spectrometer

    No full text
    International audienceThe study of the growth of nucleation-mode particles is important, as this prevents their loss through diffusion and allows them to reach sizes where they may become effective cloud condensation nuclei. Hyytiälä, a forested site in southern Finland, frequently experiences particle nucleation events during the spring and autumn, where particles first appear during the morning and continue to grow for several hours afterwards. As part of the QUEST 2 intensive field campaign during March and April 2003, an Aerodyne Aerosol Mass Spectrometer (AMS) was deployed alongside other aerosol instrumentation to study the particulate composition and dynamics of growth events and characterise the background aerosol. Despite the small mass concentrations, the AMS was able to distinguish the grown particles in the <100 nm regime several hours after an event and confirm that the particles were principally organic in composition. The AMS was also able to derive a mass spectral fingerprint for the organic species present, and found that it was consistent between events and independent of the mean particle diameter during non-polluted cases, implying the same species were also condensing onto the accumulation mode. The results were compared with those from offline analyses such as GC-MS and were consistent with the hypothesis that the main components were alkanes from plant waxes and the oxidation products of terpenes

    Targeted Clinical Metabolite Profiling Platform for the Stratification of Diabetic Patients

    Get PDF
    Several small molecule biomarkers have been reported in the literature for prediction and diagnosis of (pre)diabetes, its co-morbidities, and complications. Here, we report the development and validation of a novel, quantitative method for the determination of a selected panel of 34 metabolite biomarkers from human plasma. We selected a panel of metabolites indicative of various clinically-relevant pathogenic stages of diabetes. We combined these candidate biomarkers into a single ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method and optimized it, prioritizing simplicity of sample preparation and time needed for analysis, enabling high-throughput analysis in clinical laboratory settings. We validated the method in terms of limits of detection (LOD) and quantitation (LOQ), linearity (R-2), and intra- and inter-day repeatability of each metabolite. The method's performance was demonstrated in the analysis of selected samples from a diabetes cohort study. Metabolite levels were associated with clinical measurements and kidney complications in type 1 diabetes (T1D) patients. Specifically, both amino acids and amino acid-related analytes, as well as specific bile acids, were associated with macro-albuminuria. Additionally, specific bile acids were associated with glycemic control, anti-hypertensive medication, statin medication, and clinical lipid measurements. The developed analytical method is suitable for robust determination of selected plasma metabolites in the diabetes clinic

    Hydroxysteroid 17-beta dehydrogenase 13 variant increases phospholipids and protects against fibrosis in nonalcoholic fatty liver disease

    Get PDF
    Carriers of the hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13) gene variant (rs72613567:TA) have a reduced risk of NASH and cirrhosis but not steatosis. We determined its effect on liver histology, lipidome, and transcriptome using ultra performance liquid chromatography-mass spectrometry and RNA-seq. In carriers and noncarriers of the gene variant, we also measured pathways of hepatic fatty acids (de novo lipogenesis [ONLI and adipose tissue lipolysis [ATL] using (H2O)-H-2 and H-2-glycerol) and insulin sensitivity using H-3-glucose and euglycemic-hyperinsulinemic clamp) and plasma cytokines. Carriers and noncarriers had similar age, sex and BMI. Fibrosis was significantly less frequent while phospholipids, but not other lipids, were enriched in the liver in carriers compared with noncarriers. Expression of 274 genes was altered in carriers compared with noncarriers, consisting predominantly of downregulated inflammation-related gene sets. Plasma IL-6 concentrations were lower, but DNL, ATL and hepatic insulin sensitivity were similar between the groups. In conclusion, carriers of the HSD17B13 variant have decreased fibrosis and expression of inflammation-related genes but increased phospholipids in the liver. These changes are not secondary to steatosis, ONL, ATL, or hepatic insulin sensitivity. The increase in phospholipids and decrease in fibrosis are opposite to features of choline-deficient models of liver disease and suggest HSD17B13 as an attractive therapeutic target.Peer reviewe

    Persistent Alterations in Plasma Lipid Profiles Before Introduction of Gluten in the Diet Associated With Progression to Celiac Disease

    Get PDF
    OBJECTIVES:Celiac disease (CD) is a chronic enteropathy characterized by an autoimmune reaction in the small intestine of genetically susceptible individuals. The underlying causes of autoimmune reaction and its effect on host metabolism remain largely unknown. Herein, we apply lipidomics to elucidate the early events preceding clinical CD in a cohort of Finnish children, followed up in the Type 1 Diabetes Prediction and Prevention study. METHODS:Mass spectrometry-based lipidomics profiling was applied to a longitudinal/prospective series of 233 plasma samples obtained from CD progressors (n = 23) and healthy controls (n = 23), matched for human leukocyte antigen (HLA) risk, sex, and age. The children were followed from birth until diagnosis of clinical CD and subsequent introduction of a gluten-free diet. RESULTS:Twenty-three children progressed to CD at a mean age of 4.8 years. They showed increased amounts of triacylglycerols (TGs) of low carbon number and double bond count and a decreased level of phosphatidylcholines by age 3 months as compared to controls. These differences were exacerbated with age but were not observed at birth (cord blood). No significant differences were observed in the essential TGs. DISCUSSION:Our preliminary findings suggest that abnormal lipid metabolism associates with the development of clinical CD and occurs already before the first introduction of gluten to the diet. Moreover, our data suggest that the specific TGs found elevated in CD progressors may be due to a host response to compromised intake of essential lipids in the small intestine, requiring de novo lipogenesis.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal

    Circulating metabolites in progression to islet autoimmunity and type 1 diabetes

    Get PDF
    Aims/hypothesis: Metabolic dysregulation may precede the onset of type 1 diabetes. However, these metabolic disturbances and their specific role in disease initiation remain poorly understood. In this study, we examined whether children who progress to type 1 diabetes have a circulatory polar metabolite profile distinct from that of children who later progress to islet autoimmunity but not type 1 diabetes and a matched control group.Methods: We analysed polar metabolites from 415 longitudinal plasma samples in a prospective cohort of children in three study groups: those who progressed to type 1 diabetes; those who seroconverted to one islet autoantibody but not to type 1 diabetes; and an antibody-negative control group. Metabolites were measured using two-dimensional GC high-speed time of flight MS.Results: In early infancy, progression to type 1 diabetes was associated with downregulated amino acids, sugar derivatives and fatty acids, including catabolites of microbial origin, compared with the control group. Methionine remained persistently upregulated in those progressing to type 1 diabetes compared with the control group and those who seroconverted to one islet autoantibody. The appearance of islet autoantibodies was associated with decreased glutamic and aspartic acids.Conclusions/interpretation: Our findings suggest that children who progress to type 1 diabetes have a unique metabolic profile, which is, however, altered with the appearance of islet autoantibodies. Our findings may assist with early prediction of the disease.</p

    A longitudinal plasma lipidomics dataset from children who developed islet autoimmunity and type 1 diabetes

    Get PDF
    Early prediction and prevention of type 1 diabetes (T1D) are currently unmet medical needs. Previous metabolomics studies suggest that children who develop T1D are characterised by a distinct metabolic profile already detectable during infancy, prior to the onset of islet autoimmunity. However, the specificity of persistent metabolic disturbances in relation T1D development has not yet been established. Here, we report a longitudinal plasma lipidomics dataset from (1) 40 children who progressed to T1D during follow-up, (2) 40 children who developed single islet autoantibody but did not develop T1D and (3) 40 matched controls (6 time points: 3, 6, 12, 18, 24 and 36 months of age). This dataset may help other researchers in studying age-dependent progression of islet autoimmunity and T1D as well as of the age-dependence of lipidomic profiles in general. Alternatively, this dataset could more broadly used for the development of methods for the analysis of longitudinal multivariate data

    Integrated Lipidomics and Proteomics Point to Early Blood-Based Changes in Childhood Preceding Later Development of Psychotic Experiences: Evidence From the Avon Longitudinal Study of Parents and Children

    Get PDF
    Background: The identification of early biomarkers of psychotic experiences (PEs) is of interest because early diagnosis and treatment of those at risk of future disorder is associated with improved outcomes. The current study investigated early lipidomic and coagulation pathway protein signatures of later PEs in subjects from the Avon Longitudinal Study of Parents and Children cohort.Methods: Plasma of 115 children (12 years of age) who were first identified as experiencing PEs at 18 years of age (48 cases and 67 controls) were assessed through integrated and targeted lipidomics and semitargeted proteomics approaches. We assessed the lipids, lysophosphatidylcholines (n = 11) and phosphatidylcholines (n = 61), and the protein members of the coagulation pathway (n = 22) and integrated these data with complement pathway protein data already available on these subjects.Results: Twelve phosphatidylcholines, four lysophosphatidylcholines, and the coagulation protein plasminogen were altered between the control and PEs groups after correction for multiple comparisons. Lipidomic and proteomic datasets were integrated into a multivariate network displaying a strong relationship between most lipids that were significantly associated with PEs and plasminogen. Finally, an unsupervised clustering approach identified four different clusters, with one of the clusters presenting the highest case-control ratio (p Conclusions: Our findings indicate that the lipidome and proteome of subjects who report PEs at 18 years of age are already altered at 12 years of age, indicating that metabolic dysregulation may contribute to an early vulnerability to PEs and suggesting crosstalk between these lysophosphatidylcholines, phosphatidylcholines, and coagulation and complement proteins.</p

    Semi-Empirical Topological Method for Prediction of the Relative Retention Time of Polychlorinated Biphenyl Congeners on 18 Different HR GC Columns

    Get PDF
    High resolution gas chromatographic relative retention time (HRGC-RRT) models were developed to predict relative retention times of the 209 individual polychlorinated biphenyls (PCBs) congeners. To estimate and predict the HRGC-RRT values of all PCBs on 18 different stationary phases, a multiple linear regression equation of the form RRT = ao + a1 (no. o-Cl) + a2 (no. m-Cl) + a3 (no. p-Cl) + a4 (VM or SM) was used. Molecular descriptors in the models included the number of ortho-, meta-, and para-chlorine substituents (no. o-Cl, m-Cl and p-Cl, respectively), the semi-empirically calculated molecular volume (VM), and the molecular surface area (SM). By means of the final variable selection method, four optimal semi-empirical descriptors were selected to develop a QSRR model for the prediction of RRT in PCBs with a correlation coefficient between 0.9272 and 0.9928 and a leave-one-out cross-validation correlation coefficient between 0.9230 and 0.9924 on each stationary phase. The root mean squares errors over different 18 stationary phases are within the range of 0.0108–0.0335. The accuracy of all the developed models were investigated using cross-validation leave-one-out (LOO), Y-randomization, external validation through an odd–even number and division of the entire data set into training and test sets
    corecore