83 research outputs found

    The different catalytic roles of the metal- binding ligands in human 4-hydroxyphenylpyruvate dioxygenase

    Get PDF
    4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a non-haem iron(II)-dependent oxygenase that catalyses the conversion of 4-hydroxyphenylpyruvate (HPP) to homogentisate (HG). In the active site, a strictly conserved 2-His-1-Glu facial triad co-ordinates the iron ready for catalysis. Substitution of these residues resulted in about a 10-fold decrease in the metal binding affinity, as measured by isothermal titration calorimetry, and a large reduction in enzyme catalytic efficiencies. The present study revealed the vital role of the ligand Glu349 in enzyme function. Replacing this residue with alanine resulted in loss of activity. The E349G variant retained 5% activity for the coupled reaction, suggesting that co-ordinating water may be able to support activation of the trans-bound dioxygen upon substrate binding. The reaction catalysed by the H183A variant was fully uncoupled. H183A variant catalytic activity resulted in protein cleavage between Ile267 and Ala268 and the production of an N-terminal fragment. The H266A variant was able to produce 4-hydroxyphenylacetate (HPA), demonstrating that decarboxylation had occurred but that there was no subsequent product formation. Structural modelling of the variant enzyme with bound dioxygen revealed the rearrangement of the co-ordination environment and the dynamic behaviour of bound dioxygen in the H266A and H183A variants respectively. These models suggest that the residues regulate the geometry of the reactive oxygen intermediate during the oxidation reaction. The mutagenesis and structural simulation studies demonstrate the critical and unique role of each ligand in the function of HPPD, and which correlates with their respective co-ordination position.</jats:p

    Identification and characterization of a novel CASR mutation causing familial hypocalciuric hypercalcemia

    Get PDF
    ContextAlthough a monoallelic mutation in the calcium-sensing receptor (CASR) gene causes familial hypocalciuric hypercalcemia (FHH), the functional characterization of the identified CASR mutation linked to the clinical response to calcimimetics therapy is still limited.ObjectiveA 45-year-old male presenting with moderate hypercalcemia, hypocalciuria, and inappropriately high parathyroid hormone (PTH) had a good response to cinacalcet (total serum calcium (Ca2+) from 12.5 to 10.1 mg/dl). We identified the genetic mutation and characterized the functional and pathophysiological mechanisms, and then linked the mutation to calcimimetics treatment in vitro.DesignSanger sequencing of the CASR, GNA11, and AP2S1 genes was performed in his family. The simulation model was used to predict the function of the identified mutant. In vitro studies, including immunoblotting, immunofluorescence, a cycloheximide chase study, Calbryte™ 520 Ca2+ detection, and half-maximal effective concentration (EC50), were examined.ResultsThis proband was found to carry a de novo heterozygous missense I554N in the cysteine-rich domain of CASR, which was pathogenic based on the different software prediction models and ACGME criteria. The simulation model showed that CASR I554N mutation decreased its binding energy with Ca2+. Human CASR I554N mutation attenuated the stability of CASR protein, reduced the expression of p-ERK 1/2, and blunted the intracellular Ca2+ response to gradient extracellular Ca2+ (eCa2+) concentration. The EC50 study also demonstrated the correctable effect of calcimimetics on the function of the CASR I554N mutation.ConclusionThis novel CASR I554N mutation causing FHH attenuates CASR stability, its binding affinity with Ca2+, and the response to eCa2+ corrected by therapeutic calcimimetics

    Male Germ Cell-Specific RNA Binding Protein RBMY: A New Oncogene Explaining Male Predominance in Liver Cancer

    Get PDF
    Male gender is a risk factor for the development of hepatocellular carcinoma (HCC) but the mechanisms are not fully understood. The RNA binding motif gene on the Y chromosome (RBMY), encoding a male germ cell-specific RNA splicing regulator during spermatogenesis, is aberrantly activated in human male liver cancers. This study investigated the in vitro oncogenic effect and the possible mechanism of RBMY in human hepatoma cell line HepG2 and its in vivo effect with regards to the livers of human and transgenic mice. RBMY expression in HepG2 cells was knocked down by RNA interference and the cancer cell phenotype was characterized by soft-agar colony formation and sensitivity to hydrogen-peroxide-induced apoptosis. The results revealed that RBMY knockdown reduced the transformation and anti-apoptotic efficiency of HepG2 cells. The expression of RBMY, androgen receptor (AR) and its inhibitory variant AR45, AR-targeted genes insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein 3 (IGFBP-3) was analyzed by quantitative RT-PCR. Up-regulation of AR45 variant and reduction of IGF-1 and IGFBP-3 expression was only detected in RBMY knockdown cells. Moreover, RBMY positive human male HCC expressed lower level of AR45 as compared to RBMY negative HCC tissues. The oncogenic properties of RBMY were further assessed in a transgenic mouse model. Liver-specific RBMY transgenic mice developed hepatic pre-cancerous lesions, adenoma, and HCC. RBMY also accelerated chemical carcinogen-induced hepatocarcinogenesis in transgenic mice. Collectively, these findings suggest that Y chromosome-specific RBMY is likely involved in the regulation of androgen receptor activity and contributes to male predominance of HCC

    An Indo-Pacifc coral spawning database

    Get PDF
    The discovery of multi-species synchronous spawning of scleractinian corals on the Great Barrier Reef in the 1980s stimulated an extraordinary effort to document spawning times in other parts of the globe. Unfortunately, most of these data remain unpublished which limits our understanding of regional and global reproductive patterns. The Coral Spawning Database (CSD) collates much of these disparate data into a single place. The CSD includes 6178 observations (3085 of which were unpublished) of the time or day of spawning for over 300 scleractinian species in 61 genera from 101 sites in the Indo-Pacific. The goal of the CSD is to provide open access to coral spawning data to accelerate our understanding of coral reproductive biology and to provide a baseline against which to evaluate any future changes in reproductive phenology

    The different catalytic roles of the metal- binding ligands in human 4-hydroxyphenylpyruvate dioxygenase

    Get PDF
    4‐Hydroxylphenylpyruvatedioxygenase (HPPD) is a non‐haem iron(II)‐dependent oxygenase that catalyzes the conversion of 4‐hydroxylphenylpyruvate (HPP) to homogentisate (HG). In the active site, a strictly conserved 2‐His‐1‐Glu facial triad coordinates the iron ready for catalysis. Substitution of these residues resulted in about a 10‐fold decrease in the metal binding affinity, as measured by isothermal titration calorimetry, and a large reduction in enzyme catalytic efficiencies. This study revealed the vital role of the ligand E349 in enzyme function. Substitution of this residue by alanine resulted in loss of activity. The E349G variant retained 5%activity for the coupled reaction, suggesting that coordinating water may be able to support activation of the trans bound dioxygen upon substrate binding. The reaction catalysed by the H183A variant was fully uncoupled. H183A variant catalytic activity resulted in protein cleavage between Ile267 Ala268 and the production of an N-terminal fragment. The H266A variant was able to produce 4‐hydroxyphenylacetate(HPA), demonstrating that decarboxylation had occurred but that there was no subsequent product formation. Structural modelling of the variant enzyme with bound dioxygen revealed the rearrangement of the coordination environment and the dynamic behaviour of bound dioxygen in the H266A and H183A variants, respectively. These models suggest that the residues regulate the geometry of the reactive oxygen intermediate during the oxidation reaction. The mutagenesis and structural simulation studies demonstrate the critical and unique role of each ligand in the function of HPPD, and which correlates with their respective coordination position
    corecore