1,069 research outputs found

    TRIP13PCH-2 promotes Mad2 localization to unattached kinetochores in the spindle checkpoint response.

    Get PDF
    The spindle checkpoint acts during cell division to prevent aneuploidy, a hallmark of cancer. During checkpoint activation, Mad1 recruits Mad2 to kinetochores to generate a signal that delays anaphase onset. Yet, whether additional factors contribute to Mad2's kinetochore localization remains unclear. Here, we report that the conserved AAA+ ATPase TRIP13(PCH-2) localizes to unattached kinetochores and is required for spindle checkpoint activation in Caenorhabditis elegans. pch-2 mutants effectively localized Mad1 to unattached kinetochores, but Mad2 recruitment was significantly reduced. Furthermore, we show that the C. elegans orthologue of the Mad2 inhibitor p31(comet)(CMT-1) interacts with TRIP13(PCH-2) and is required for its localization to unattached kinetochores. These factors also genetically interact, as loss of p31(comet)(CMT-1) partially suppressed the requirement for TRIP13(PCH-2) in Mad2 localization and spindle checkpoint signaling. These data support a model in which the ability of TRIP13(PCH-2) to disassemble a p31(comet)/Mad2 complex, which has been well characterized in the context of checkpoint silencing, is also critical for spindle checkpoint activation

    Chronobiology of Epilepsy

    Get PDF
    A fine balance between neuronal excitation and inhibition governs the physiological state of the brain. It has been hypothesized that when this balance is lost as a result of excessive excitation or reduced inhibition, pathological states such as epilepsy emerge. Decades of investigation have shown this to be true in vitro. However, in vivo evidence of the emerging imbalance during the "latent period" between the initiation of injury and the expression of the first spontaneous behavioral seizure has not been demonstrated. Here, we provide the first demonstration of this emerging imbalance between excitation and inhibition in vivo by employing long term, high temporal resolution, and continuous local field recordings from microelectrode arrays implanted in an animal model of limbic epilepsy. We were able to track both the inhibitory and excitatory postsynaptic field activity during the entire latent period, from the time of injury to the occurrence of the first spontaneous epileptic seizure. During this latent period we observe a sustained increase in the firing rate of the excitatory postsynaptic field activity, paired with a subsequent decrease in the firing rate of the inhibitory postsynaptic field activity within the CA1 region of the hippocampus. Firing rates of both excitatory and inhibitory CA1 field activities followed a circadian- like rhythm, which is locked near in-phase in controls and near anti-phase during the latent period. We think that these observed changes are implicated in the occurrence of spontaneous seizure onset following injury

    Experimental Evaluation of the Penalty Associated With Micro-Blowing for Reducing Skin Friction

    Get PDF
    A micro-blowing technique (MBT) experiment was conducted in the Advanced Nozzle and Engine Components Test Facility at the NASA Lewis Research Center. The objectives of the test were to evaluate the pressure-drag penalty associated with the MBT and to provide additional information about the porous plates used for micro-blowing. The results showed that 1 of 12 plates tested could reduce the total drag (skin-friction drag plus pressure drag) below a solid flat plate value. The results of this experiment and prior data showed that a total drag reduction below a solid flat plate value was possible. More tests are needed to find an optimal MBT skin and to find a technique to reduce pressure drag

    Acute Maltodextrin Supplementation During Resistance Exercise

    Get PDF
    PURPOSE: Most of the research investigating the ergogenic enhancing mechanisms of carbohydrate have been conducted using aerobic based exercise. Therefore, the purpose of this study was to investigate the effects of pre-exercise maltodextrin ingestion on resistance exercise performance, serum insulin, epinephrine, glucose, and muscle glycogen concentrations. METHODS: In a double blind, cross over, repeated measures design, participants completed four sets to failure at 70% of 1-RM with 45s rest on the angled leg press with or without pre-exercise maltodextrin (2g/kg) after a 3hr fast. Serum glucose, epinephrine, and insulin were assessed at baseline, 30 min post-ingestion, immediately after, and 1hr post-exercise with or without carbohydrate supplementation. Muscle glycogen was assessed from biopsy specimens sampled from the vastus lateralis before supplementation, immediately after exercise, and 1hr post exercise under both conditions. RESULTS: There was no main effect of supplement on resistance exercise performance (p=.18). Muscle glycogen concentration decreased across time for both groups (p\u3c.001). There was an interaction in serum glucose decreasing more during exercise in the carbohydrate condition (p=.026). An interaction occurred showing insulin decreased during exercise in the carbohydrate condition (p=.003). Also, there was a main effect of insulin being elevated with carbohydrate consumption (p=.027). Epinephrine was decreased across all time points after carbohydrate ingestion (p=.023). CONCLUSION: Carbohydrate supplementation before resistance exercise did not improve leg press performance to fatigue despite increased metabolic substrate availability. These results indicate that pre-exercise dietary carbohydrate will be utilized preferentially during exercise due to decreased epinephrine, decreased serum glucose, and increased insulin concentrations. However, the increases in glycolytic substrate availability will not increase exercise performance or glycogen content following 1hr of recovery

    Student self-assessment after Essential Surgical Skills training for final-year medical students at Gulu University, northern Uganda

    Get PDF
    Background: Medical practice depends on a set of essential clinical and surgical skills, yet inadequate attention is given to training these skills in medical school. This study aimed to evaluate the effect of Essential Surgical Skills® (ESS) training on self-report comfort levels in performing surgical skills among final-year medical students at Gulu University in Gulu, Uganda. Methods: This study analysed 5 years’ worth of pre- and post-course ESS self-evaluation questionnaires completed by final-year medical students attending Gulu University between 2013 and 2017. Pre- and post-course results were compared using Student’s t-test. ESS elements covered over the 5-day course were: surgery fundamentals; respiratory and anaesthesia skills; and skills related to gastrointestinal, obstetric, and orthopaedic surgery. Results: There was a significant improvement in the students’ level of comfort related to all ESS components when pre- and post-course questionnaire responses were compared (P < 0.001). Conclusions: Medical schools should emphasize training of essential clinical and surgical skills because these give medical students the confidence and proficiency needed in clinical practice. Keywords: surgical skills; education; training; medical school; Uganda; Somalia

    Fabrication of Diamond Nanowires for Quantum Information Processing Applications

    Full text link
    We present a design and a top-down fabrication method for realizing diamond nanowires in both bulk single crystal and polycrystalline diamond. Numerical modeling was used to study coupling between a Nitrogen Vacancy (NV) color center and optical modes of a nanowire, and to find an optimal range of nanowire diameters that allows for large collection efficiency of emitted photons. Inductively coupled plasma (ICP) reactive ion etching (RIE) with oxygen is used to fabricate the nanowires. Drop-casted nanoparticles (including Au\mathrm{Au}, SiO2\mathrm{SiO_{2}} and Al2O3\mathrm{Al_2O_3}) as well as electron beam lithography defined spin-on glass and evaporated Au\mathrm{Au} have been used as an etch mask. We found Al2O3\mathrm{Al_2O_3} nanoparticles to be the most etch resistant. At the same time FOx e-beam resist (spin-on glass) proved to be a suitable etch mask for fabrication of ordered arrays of diamond nanowires. We were able to obtain nanowires with near vertical sidewalls in both polycrystalline and single crystal diamond. The heights and diameters of the polycrystalline nanowires presented in this paper are \unit[\approx1]{\mu m} and \unit[120-340]{nm}, respectively, having a \unit[200]{nm/min} etch rate. In the case of single crystal diamond (types Ib and IIa) nanowires the height and diameter for different diamonds and masks shown in this paper were \unit[1-2.4]{\mu m} and \unit[120-490]{nm} with etch rates between \unit[190-240]{nm/min}.Comment: 11 pages, 26 figures, submitted to Diamond and related Materials; http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TWV-4Y7MM1M-1&_user=10&_coverDate=01%2F25%2F2010&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=6dc58b30f4773a710c667306fc541cc
    • …
    corecore