6,218 research outputs found

    An Agent Based Model for the Simulation of Transport Demand and Land Use

    Get PDF
    Agent based modelling has emerged as a promising tool to provide planners with insights on social behaviour and the interdependencies characterising urban system, particularly with respect to transport and infrastructure planning. This paper presents an agent based model for the simulation of land use and transport demand of an urban area of Sydney, Australia. Each individual in the model has a travel diary which comprises a sequence of trips the person makes in a representative day as well as trip attributes such as travel mode, trip purpose, and departure time. Individuals are associated with each other by their household relationship, which helps define the interdependencies of their travel diary and constrains their mode choice. This allows the model to not only realistically reproduce how the current population uses existing transport infrastructure but more importantly provide comprehensive insight into future transport demands. The router of the traffic micro-simulator TRANSIMS is incorporated in the model to inform the actual travel time of each trip and changes of traffic density on the road network. Simulation results show very good agreement with survey data in terms of the distribution of trips done by transport modes and by trip purposes, as well as the traffic density along the main road in the study area

    Partner orbits and action differences on compact factors of the hyperbolic plane. Part I: Sieber-Richter pairs

    Full text link
    Physicists have argued that periodic orbit bunching leads to universal spectral fluctuations for chaotic quantum systems. To establish a more detailed mathematical understanding of this fact, it is first necessary to look more closely at the classical side of the problem and determine orbit pairs consisting of orbits which have similar actions. In this paper we specialize to the geodesic flow on compact factors of the hyperbolic plane as a classical chaotic system. We prove the existence of a periodic partner orbit for a given periodic orbit which has a small-angle self-crossing in configuration space which is a `2-encounter'; such configurations are called `Sieber-Richter pairs' in the physics literature. Furthermore, we derive an estimate for the action difference of the partners. In the second part of this paper [13], an inductive argument is provided to deal with higher-order encounters.Comment: to appear on Nonlinearit

    Adaptive real-time predictive collaborative content discovery and retrieval in mobile disconnection prone networks

    Get PDF
    Emerging mobile environments motivate the need for the development of new distributed technologies which are able to support dynamic peer to peer content sharing, decrease high operating costs, and handle intermittent disconnections. In this paper, we investigate complex challenges related to the mobile disconnection tolerant discovery of content that may be stored in mobile devices and its delivery to the requesting nodes in mobile resource-constrained heterogeneous environments. We propose a new adaptive real-time predictive multi-layer caching and forwarding approach, CafRepCache, which is collaborative, resource, latency, and content aware. CafRepCache comprises multiple multi-layer complementary real-time distributed predictive heuristics which allow it to respond and adapt to time-varying network topology, dynamically changing resources, and workloads while managing complex dynamic tradeoffs between them in real time. We extensively evaluate our work against three competitive protocols across a range of metrics over three heterogeneous real-world mobility traces in the face of vastly different workloads and content popularity patterns. We show that CafRepCache consistently maintains higher cache availability, efficiency and success ratios while keeping lower delays, packet loss rates, and caching footprint compared to the three competing protocols across three traces when dynamically varying content popularity and dynamic mobility of content publishers and subscribers. We also show that the computational cost and network overheads of CafRepCache are only marginally increased compared with the other competing protocols

    Integer Vector Addition Systems with States

    Full text link
    This paper studies reachability, coverability and inclusion problems for Integer Vector Addition Systems with States (ZVASS) and extensions and restrictions thereof. A ZVASS comprises a finite-state controller with a finite number of counters ranging over the integers. Although it is folklore that reachability in ZVASS is NP-complete, it turns out that despite their naturalness, from a complexity point of view this class has received little attention in the literature. We fill this gap by providing an in-depth analysis of the computational complexity of the aforementioned decision problems. Most interestingly, it turns out that while the addition of reset operations to ordinary VASS leads to undecidability and Ackermann-hardness of reachability and coverability, respectively, they can be added to ZVASS while retaining NP-completness of both coverability and reachability.Comment: 17 pages, 2 figure

    Analog of Astrophysical Magnetorotational Instability in a Couette-Taylor Flow of Polymer Fluids

    Full text link
    We report experimental observation of an instability in a Couette-Taylor flow of a polymer fluid in a thin gap between two coaxially rotating cylinders in a regime where their angular velocity decreases with the radius while the specific angular momentum increases with the radius. In the considered regime, neither the inertial Rayleigh instability nor the purely elastic instability are possible. We propose that the observed "elasto-rotational" instability is an analog of the magnetorotational instability which plays a fundamental role in astrophysical Keplerian accretion disks.Comment: 4 pages, 1 figur

    Unary Pushdown Automata and Straight-Line Programs

    Full text link
    We consider decision problems for deterministic pushdown automata over a unary alphabet (udpda, for short). Udpda are a simple computation model that accept exactly the unary regular languages, but can be exponentially more succinct than finite-state automata. We complete the complexity landscape for udpda by showing that emptiness (and thus universality) is P-hard, equivalence and compressed membership problems are P-complete, and inclusion is coNP-complete. Our upper bounds are based on a translation theorem between udpda and straight-line programs over the binary alphabet (SLPs). We show that the characteristic sequence of any udpda can be represented as a pair of SLPs---one for the prefix, one for the lasso---that have size linear in the size of the udpda and can be computed in polynomial time. Hence, decision problems on udpda are reduced to decision problems on SLPs. Conversely, any SLP can be converted in logarithmic space into a udpda, and this forms the basis for our lower bound proofs. We show coNP-hardness of the ordered matching problem for SLPs, from which we derive coNP-hardness for inclusion. In addition, we complete the complexity landscape for unary nondeterministic pushdown automata by showing that the universality problem is Π2P\Pi_2 \mathrm P-hard, using a new class of integer expressions. Our techniques have applications beyond udpda. We show that our results imply Π2P\Pi_2 \mathrm P-completeness for a natural fragment of Presburger arithmetic and coNP lower bounds for compressed matching problems with one-character wildcards

    A weighted reduced basis method for parabolic PDEs with random data

    Full text link
    This work considers a weighted POD-greedy method to estimate statistical outputs parabolic PDE problems with parametrized random data. The key idea of weighted reduced basis methods is to weight the parameter-dependent error estimate according to a probability measure in the set-up of the reduced space. The error of stochastic finite element solutions is usually measured in a root mean square sense regarding their dependence on the stochastic input parameters. An orthogonal projection of a snapshot set onto a corresponding POD basis defines an optimum reduced approximation in terms of a Monte Carlo discretization of the root mean square error. The errors of a weighted POD-greedy Galerkin solution are compared against an orthogonal projection of the underlying snapshots onto a POD basis for a numerical example involving thermal conduction. In particular, it is assessed whether a weighted POD-greedy solutions is able to come significantly closer to the optimum than a non-weighted equivalent. Additionally, the performance of a weighted POD-greedy Galerkin solution is considered with respect to the mean absolute error of an adjoint-corrected functional of the reduced solution.Comment: 15 pages, 4 figure

    Radio Galaxy Zoo: Knowledge Transfer Using Rotationally Invariant Self-Organising Maps

    Full text link
    With the advent of large scale surveys the manual analysis and classification of individual radio source morphologies is rendered impossible as existing approaches do not scale. The analysis of complex morphological features in the spatial domain is a particularly important task. Here we discuss the challenges of transferring crowdsourced labels obtained from the Radio Galaxy Zoo project and introduce a proper transfer mechanism via quantile random forest regression. By using parallelized rotation and flipping invariant Kohonen-maps, image cubes of Radio Galaxy Zoo selected galaxies formed from the FIRST radio continuum and WISE infrared all sky surveys are first projected down to a two-dimensional embedding in an unsupervised way. This embedding can be seen as a discretised space of shapes with the coordinates reflecting morphological features as expressed by the automatically derived prototypes. We find that these prototypes have reconstructed physically meaningful processes across two channel images at radio and infrared wavelengths in an unsupervised manner. In the second step, images are compared with those prototypes to create a heat-map, which is the morphological fingerprint of each object and the basis for transferring the user generated labels. These heat-maps have reduced the feature space by a factor of 248 and are able to be used as the basis for subsequent ML methods. Using an ensemble of decision trees we achieve upwards of 85.7% and 80.7% accuracy when predicting the number of components and peaks in an image, respectively, using these heat-maps. We also question the currently used discrete classification schema and introduce a continuous scale that better reflects the uncertainty in transition between two classes, caused by sensitivity and resolution limits
    • …
    corecore