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ARTICLE

A platform for glycoengineering a polyvalent
pneumococcal bioconjugate vaccine using E. coli
as a host
Christian M. Harding1, Mohamed A. Nasr2,7, Nichollas E. Scott3, Guillaume Goyette-Desjardins 4,

Harald Nothaft2, Anne E. Mayer5, Sthefany M. Chavez5, Jeremy P. Huynh5, Rachel L. Kinsella5,

Christine M. Szymanski6, Christina L. Stallings5, Mariela Segura4 & Mario F. Feldman1,5

Chemical synthesis of conjugate vaccines, consisting of a polysaccharide linked to a protein,

can be technically challenging, and in vivo bacterial conjugations (bioconjugations) have

emerged as manufacturing alternatives. Bioconjugation relies upon an oligosaccharyl-

transferase to attach polysaccharides to proteins, but currently employed enzymes are not

suitable for the generation of conjugate vaccines when the polysaccharides contain glucose at

the reducing end, which is the case for ~75% of Streptococcus pneumoniae capsules. Here, we

use an O-linking oligosaccharyltransferase to generate a polyvalent pneumococcal bio-

conjugate vaccine with polysaccharides containing glucose at their reducing end. In addition,

we show that different vaccine carrier proteins can be glycosylated using this system.

Pneumococcal bioconjugates are immunogenic, protective and rapidly produced within E. coli

using recombinant techniques. These proof-of-principle experiments establish a platform to

overcome limitations of other conjugating enzymes enabling the development of bioconju-

gate vaccines for many important human and animal pathogens.
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S treptococcus pneumoniae (pneumococcus) is a leading
cause of bacterial-induced pneumonia, meningitis, and
bacteremia globally, particularly, afflicting children 5 years

of age or younger1,2. Moreover, a 2000 epidemiological survey
from the World Health Organization (WHO) estimated that
735,000 human immunodeficiency virus-uninfected children died
from pneumococcal-related diseases2 with updated estimates
slightly reduced to 541,000 deaths for the year 2008 (ref. 3). An
increase in the number of prophylactic treatment options, mainly
due to advancements in pneumococcal vaccine developments, has
emerged over the past two decades. Pneumovax®23, a 23-valent
polysaccharide vaccine, is used in elderly populations as well as
children over the age of 2 years who are at increased risk of
pneumococcal disease;4 however, polysaccharide vaccines typi-
cally act as T cell-independent antigens and are generally not
effective in children 2 years of age and younger5. On the other
hand, covalently linking a polysaccharide to a protein in the form
of a conjugate vaccine elicits a T cell-dependent immune response
across all age groups, characterized by high-affinity immunoglo-
bulin G (IgG)-producing plasma cells and memory B cells6,7.

Three pneumococcal conjugate vaccines have been commer-
cially licensed since the year 2000: Prevnar®, Synflorix™, and
Prevnar 13®. Prevnar 13®, the most broadly protecting pneumo-
coccal conjugate vaccine, is comprised of 13 protein-
polysaccharide conjugates consisting of pneumococcal serotypes
1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F, and 23F, each
individually linked to the genetically inactivated diphtheria toxoid
CRM197. Although highly protective in a three-dose schedule,
Prevnar 13® is one of the most expensive vaccines on the market
today. This is mainly due to its complex manufacturing process
resulting in a cost of ~600 US dollars for primary and booster
immunizations8. In fact, Prevnar 13® has been Pfizer’s best-selling
product for the fiscal years 2015–2017, with total revenues
exceeding 17.5 billion US dollars9. Although pneumococcal
conjugate vaccines have significantly reduced the burden of
pneumococcal disease events10,11, due to variations in global
serotype distributions12,13, serotype replacement events14, as well
as the lack of a low-cost alternative for developing countries,
alternative manufacturing strategies to expedite development of
next generation vaccines are needed.

As mentioned above, currently licensed pneumococcal con-
jugate vaccines are synthesized chemically, which is a laborious
process plagued with technical challenges, low yields, and batch-
to-batch variations15, highlighting the need for improved con-
jugate vaccine synthetic methodologies. Over the past 15 years,
in vivo conjugation using bacterial protein glycosylation systems
has emerged as a feasible alternative to chemical conjugation16,
with multiple bioconjugate vaccine candidates now in various
stages of development and clinical trials17,18. Bioconjugation is
based on exploiting protein glycosylation, a ubiquitous post-
translational modification in which glycans are covalently linked
to proteins. In bacteria, glycans are commonly bound to proteins
via N- or O-linkages on asparagine or serine/threonine residues,
respectively19,20. Several pathways for bacterial glycosylation have
been characterized, and among the best described are the oligo-
saccharyltransferase (OTase)-dependent pathways in Gram-
negative bacteria20. In these systems, a lipid-linked oligo-
saccharide is assembled sequentially at the cytoplasmic leaflet of
the inner membrane, flipped to the periplasmic leaflet, and then
transferred to acceptor proteins by either N- or O-OTases
depending on the site of glycan attachment20. Many bacterial
species, including S. pneumoniae, also synthesize capsular poly-
saccharides (CPSs) employing the same lipid-linked oligo-
saccharides prior to their polymerization, export, and transfer to
the cell surface enabling their exploitation for bioconjugation
reactions in Escherichia coli21.

Glycoproteins have been recombinantly synthesized in E. coli for
use as vaccines16 and/or diagnostics22,23 by co-expressing three
components: a genetic cluster encoding for the proteins required to
synthesize a glycan of interest, an OTase and an acceptor protein.
One drawback of this process is the apparent glycan substrate
specificity of the known OTases, which, for some of them, has been
suggested to be dictated by the reducing end sugar24 (the first
monosaccharide in the growing polysaccharide chain) of the lipid-
linked oligo/polysaccharide of interest. Although OTases are able to
transfer many different oligo- and polysaccharide structures24,25,
some sugars have not been efficiently conjugated by known OTases
to acceptor proteins. Therefore, characterizing different OTases is
paramount for expanding our arsenal of therapeutic glycoproteins,
including bioconjugate vaccines.

OTases currently used for commercially synthesizing glyco-
conjugates are the Campylobacter jejuni N-OTase PglB16 and the
Neisseria meningitidis O-OTase PglL26, both of which exhibit a
great deal of promiscuity towards glycan substrates24,25. However,
neither enzyme has been experimentally demonstrated to con-
jugate glycans containing a glucose residue at the reducing end,
such as ~75% of S. pneumoniae CPSs19,27. In the present work, we
demonstrate the first successful in vivo conjugation of S. pneu-
moniae CPSs containing glucose as the reducing end mono-
saccharide from multiple serotypes. This has been achieved using
a different class of O-OTase, previously designated as PglLComP

by our group28, and henceforth termed PglS. Here, we present
proof-of-concept studies on the engineering, characterization,
and immunological responses of a polyvalent pneumococcal
bioconjugate vaccine using the natural acceptor protein ComP as
a vaccine carrier as well as a monovalent pneumococcal bio-
conjugate vaccine using a conventional vaccine carrier containing
the Pseudomonas aeruginosa exotoxin A protein.

Results
PglS transfers pneumococcal CPS14 to its acceptor protein.
PglB, the first OTase described, was shown to preferentially
transfer glycans containing an acetamido group at the C-2 posi-
tion of the reducing end sugar to asparagine residues of acceptor
proteins24. However, polysaccharides with galactose (Gal) at the
reducing end, such as the Salmonella enterica Typhimurium O
antigen, have been transferred by an engineered PglB variant29

and also by PglL, the O-OTase from Neisseria meningiditis25.
However, there is no evidence available for PglB- or PglL-
mediated transfer of polysaccharides containing glucose (Glc) at
the reducing end. We therefore tested the ability of PglB and PglL
to transfer the pneumococcal CPS14, which has a Glc residue as
the reducing end sugar, to their cognate acceptor proteins, AcrA
and DsbA, respectively. As seen in Fig. 1a–f, no evidence for
CPS14 glycosylation to either acceptor protein was observed.

Previously, we demonstrated that Acinetobacter species contain
three O-linked OTases: a general PglL OTase responsible for
glycosylating multiple proteins, and two pilin-specific OTases28.
The first pilin-specific OTase is an ortholog of TfpO (also known
as PilO) and is not employed for in vivo conjugation systems due
to its inability to transfer polysaccharides with more than one
repeating unit26. The second pilin-specific OTase, PglS, glycosy-
lates a single protein, the type IV pilin ComP28. A bioinformatic
analysis indicated that PglS is the archetype of a distinct family of
OTases, which prompted us to test its ability to transfer
pneumococcal CPS14 to ComP. Western blotting analysis
(Fig. 1g–i) showed that co-expression of the CPS14 biosynthetic
locus in conjunction with PglS and a His-tagged variant of ComP
resulted in a typical ladder-like pattern of bands compatible with
protein glycosylation with multiple subunits. Both ComP-His
(Fig. 1g) and CPS14 (Fig. 1h) were detected with antisera specific
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to each antigen; moreover, samples treated with proteinase K did
not react with either the anti-His or anti-CPS14 antisera,
indicating that the purified material is indeed proteinaceous.
Together, these results suggest that, unlike the previously
characterized OTases, PglS is able to transfer polysaccharides
with Glc at the reducing end.

ComP is glycosylated at a serine residue in position 84. N-
glycosylation in bacteria generally occurs within the sequon D-X-
N-S-T, where X is any amino acid but proline30. On the contrary,
O-linked OTases do not seem to have defined recognition
sequons. Most O-glycosylation events in bacterial proteins occur
in regions of low complexity (LCR), rich in serine, alanine, and
proline residues31,32. Some pilins are also O-glycosylated at a C-

terminal serine residue33. We were unable to find an obvious LCR
or a C-terminal serine residue in ComP homologous to those
found in other pilin-like proteins and therefore employed mass
spectrometry to determine the site(s) of glycosylation. Purified
CPS14-ComP bioconjugates were subjected to GluC proteolytic
digestion and multiple mass spectrometric analyses. As seen in
Fig. 2, we identified a single glycopeptide consisting of a semi-
GluC-derived peptide 81ISASNATTNVATAT94 attached to a
glycan that matched the published CPS14 composition (Fig. 2a).
To enable the confirmation of both the peptide and attached
glycan sequences, multiple collision energies regimens were per-
formed to confirm the glycosylation of the semi-GluC-derived
peptide 81ISASNATTNVATAT94 with a 1378.47 Da glycan cor-
responding to HexNAc2Hexose6 (Fig. 2b). Additional glycopep-
tides were also observed decorated with extended glycans
corresponding to up to four tetrasaccharide repeat units (Sup-
plemental Fig. 1).

We have previously shown that Acinetobacter species pre-
dominantly glycosylate proteins at serine residues and thus
hypothesized that either serine 82 or 84 was the site of
glycosylation32. To determine which serine residue was the site
of glycan attachment, we employed the C. jejuni heptasaccharide
as the donor glycan, due to the ease at which glycosylation is
detectable from whole-cell lysates. Wild-type ComP was glyco-
sylated with the C. jejuni heptasaccharide as indicated by its
increased electrophoretic mobility and signal co-localization with
hR6 anti-glycan sera when co-expressed with PglS (Supplemental
Fig. 2a-c). Mass spectrometry (MS) analysis also confirmed the
presence of the C. jejuni heptasaccharide on the identical semi-
GluC-derived peptide 81ISASNATTNVATAT94 modified by
CPS14 (Supplemental Figs. 3 and 4). As a negative control, we
generated a catalytically inactive PglS mutant (H324A), which
when co-expressed with the C. jejuni heptasaccharide glycan was
unable to glycosylate wild-type ComP (Supplemental Fig. 2A-C).
We next performed site-directed mutagenesis and observed that
glycosylation of ComP with the C. jejuni heptasaccharide was
abolished in the ComP[S84A] mutant, whereas ComP[S82A] was
glycosylated at wild-type levels (Supplemental Fig. 2A-C). In
addition, the site of ComP glycosylation was also determined
using a pneumococcal polysaccharide and is discussed below.

Immunogenicity of a monovalent CPS14-ComP bioconjugate.
We evaluated the immunogenicity of a CPS14-ComP bioconju-
gate in a murine vaccination model. Two groups of mice (n= 10)
individually received 3 µg of either unglycosylated ComP or
CPS14-ComP bioconjugate. Mice were boosted on days 14 and
28, and sacrificed on day 49 for whole-blood collection. Each
vaccine was formulated based on total protein. Using an enzyme-
linked immunosorbent assay (ELISA) with a serotype 14 strain of
S. pneumoniae adsorbed to each well, we compared IgM and IgG
responses to CPS14. As seen in Supplemental Fig. 5, sera collected
from mice vaccinated with a CPS14-ComP bioconjugate had an
increased IgG response specific to CPS14 (Supp. Figure 5B), but
not an increased IgM response (Supp. Figure 5A). Further, we
employed secondary horseradish peroxidase (HRP)-tagged anti-
IgG subtype antibodies to determine which of the IgG subtypes
were present in CPS14-ComP-vaccinated mice (Supp. Figure 5C).
We determined that the CPS14-specific IgG1 response was higher
than the other subtypes, which is consistent with previous find-
ings for pneumococcal conjugate vaccines34,35.

Immunogenicity of a trivalent pneumococcal bioconjugate.
There are more than 90 serotypes of S. pneumoniae21,27. Many
increasingly prevalent serotypes, like serotypes 8, 22F, and 33F,
are not included in currently licensed vaccines36. Therefore, we
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Fig. 1 PglS can glycosylate the acceptor protein ComP with the
pneumococcal CPS14 polysaccharide. Escherichia coli SDB1 cells co-
expressing an acceptor protein (DsbA, AcrA, or ComP), an OTase (PglL,
PglB, or PglS), and the CPS14 polysaccharide were analyzed for protein
glycosylation via western blot analysis of the affinity-purified acceptor
proteins. a–c DsbA purified from SDB1 cells in the presence or absence of
PglL. a Anti-His channel probing for Hexa-histidine tagged DsbA. b Anti-
glycan channel probing for CPS14. c Merged images for panels a and b.
d–f AcrA purified from SDB1 cells in the presence or absence of PglB. d
Anti-His channel probing for Hexa-histidine tagged AcrA. e Anti-glycan
channel probing for CPS14. f Merged images for panels d and e. g–i ComP
purified from SDB1 cells in the presence or absence of PglS. g Anti-His
channel probing for Hexa-histidine-tagged ComP. h Anti-glycan channel
probing for CPS14. i Merged images for panels g and h. The red asterisk
indicates samples that were proteinase K treated for 1 h at 55 °C. Source
data are provided as a Source Data file
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tested the versatility of PglS to generate a multivalent pneumo-
coccal bioconjugate vaccine against two serotypes included in
Prevnar 13® (serotypes 9V and 14) and one serotype not included
(serotype 8). The aforementioned CPSs all contain Glc as the
reducing end sugar and are therefore not compatible with
other commercially exploited conjugating enzymes. As seen in
Figs. 3a-c and 3d-f, western blot analyses of affinity-purified
proteins from whole cells co-expressing PglS, ComP, and either
the CPS8 or CPS9V polysaccharides resulted in the generation
CPS-specific ComP bioconjugates, respectively. Again, to confirm
that the material purified was not contaminated with lipid-liked
polysaccharides, we treated the samples with proteinase K and

observed a loss of signal when analyzed via western blotting,
confirming that the bioconjugates were proteinaceous.

Next, we performed a vaccination trial to determine the
immunogenicity of a trivalent CPS8-ComP, CPS9V-ComP, and
CPS14-ComP pneumococcal bioconjugate vaccine (Fig. 4a–l).
Three control groups were included, one group receiving carrier
protein alone (unglycosylated ComP), another group receiving a
monovalent vaccine of the CPS14-ComP bioconjugate to account
for IgG specificity when analyzing immune responses against
other serotypes, and a third group receiving Prevnar 13® as a
positive control. All immunogen groups contained an
equal mixture of Freund’s adjuvant, including mice receiving
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Prevnar 13®. Day 49 sera from each group were analyzed by
ELISAs on plates coated with S. pneumoniae serotypes 8, 9V, and
14. As mentioned above, serotypes 9V and 14 are included in
Prevnar 13® and an elevated IgG response could be seen in
Prevnar 13®-immunized mice against these two serotypes 49 days
post vaccination. Mice receiving the monovalent CPS14-ComP
bioconjugate also showed significant IgG increase specific to
serotype 14 specific (Fig. 4i). Mice receiving the trivalent CPS8-/
CPS9V-/CPS14-ComP bioconjugate all had statistically signifi-
cant increases in serotype-specific IgG responses 49 days post
vaccinations (Fig. 4j–l).

Because Freund’s adjuvant is not a suitable adjuvant for human
clinical development, we performed another immunization trial
with vaccines formulated with Imject Alum Adjuvant, a mild
adjuvant containing a mixture of aluminum hydroxide and
magnesium hydroxide. Vaccination cohorts included a buffer/
adjuvant test group, a Prevnar 13® test group, and a trivalent
CPS8-/CPS9V-/CPS14-ComP bioconjugate test group. Groups of
three mice were vaccinated on days 1, 14, and 28. Serum was

collected on day 42 and used to determine effector functions via
an opsonophagocytosis assay (OPA). Given the limited amounts
of sera collected from individual mice, sera were tested for
bactericidal activity against serotypes 8 and 14, as one serotype is
included in Prevnar 13® (serotype 14) and one is not (serotype 8).
As seen in Fig. 5a, b, serum from a representative mouse
vaccinated with the trivalent CPS8-/CPS9V-/CPS14-ComP bio-
conjugate had increased bactericidal activity against S. pneumo-
niae serotype 14 strain when compared to sera from a mock-
vaccinated mouse. Importantly, that same bioconjugate vacci-
nated serum had high bactericidal activity against a S.
pneumoniae serotype 8 strain, which was not observed for
Prevnar 13®-vaccinated sera due to the absence of this conjugate
in its formulation.

Glycoengineering bioconjugates using a conventional carrier.
Up to this point, we have exploited the use of ComP from Aci-
netobacter baylyi ADP1 as a carrier protein for pneumococcal
bioconjugate vaccine production; however, we sought to increase
the commercial applicability of this technology by engineering a
conventional vaccine carrier to be compatible with our O-linked
OTase. To this end, we generated a chimeric fusion protein
consisting of the ΔE553 variant of exotoxin A from P. aeruginosa
(EPA) C terminally fused to a ComP fragment lacking its first 28
amino acids (ComPΔ28). We used a ComP ortholog from Aci-
netobacter soli strain 110264 (accession number ENV58402) as it
was most efficiently glycosylated by PglS and also found to be
glycosylated at the same conserved serine as ComP from A. baylyi
ADP1 (Supplemental Fig. 6). The EPA fusion was linked to
ComPΔ28 with a glycine–glycine–glycine–serine linker and traf-
ficked to the periplasm with a DsbA signal sequence.

Because current formulations of pneumococcal conjugate
vaccines do not contain a conjugate for serotype 8, we focused
on generating an EPA-CPS8 pneumococcal bioconjugate. The
EPA fusion was introduced into SDB1 cells co-expressing PglS
and CPS8, subsequently purified, and then probed for glycosyla-
tion. As seen in Fig. 6a, b, the EPA fusion was efficiently
glycosylated with CPS8 as determined by both western blot and
Coomassie staining of purified glycoprotein. Furthermore, MS
analysis of intact glycoproteins confirmed that the EPA fusion
was repetitively modified with an increasing mass unit of 662 Da,
which is the calculated mass of a single CPS8 subunit (Fig. 6c, d).
The EPA fusion was found to be glycosylated with at least 11
CPS8 subunits by intact protein analysis; however, western blot
and Coomassie analyses indicated that >15 subunits were able to
be transferred.

Subsequently, we performed a vaccination experiment compar-
ing the immunogenicity of an EPA-CPS8 pneumococcal
bioconjugate to a ComP-CPS8 pneumococcal bioconjugate.
Groups of 10 mice were either vaccinated with 5 µg of EPA
alone (based on total protein), 5 µg of ComP-CPS8 (based on
polysaccharide as determined by anthrone sulfuric acid), or 100
ng of EPA-CPS8 (based on polysaccharide as determined by MS
of intact EPA-CPS8). Mice were vaccinated on days 1, 14, and 28
with serum collected on day 42. All vaccines were formulated 1:1
with imject Alum Adjuvant. ELISAs were subsequently per-
formed to determine the IgG titers specific to CPS8. As seen in
Fig. 7a, mice vaccinated with either ComP-CPS8 or EPA-CPS8
had statistically significant increases in IgG titers specific to CPS8
when compared to EPA-vaccinated mice. Additionally, the
protective capacity of sera from vaccinated mice was determined
using a murine adapted OPA with whole-blood leukocytes. As
shown in Fig. 7b, sera from vaccinated mice immunized with
ComP-CPS8 displayed high levels of bactericidal killing ranging
from 84 to 50%, with one mouse not displaying any killing
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Fig. 3 Western blot analysis of CPS8-ComP and CPS9V-ComP
glycoproteins. Escherichia coli SDB1 cells were prepared co-expressing
ComP, PglS, and either the pneumococcal CSP8 or CPS9V. Affinity-purified
glycosylated ComP from each strain was analyzed for protein glycosylation
via western blot analysis. a–c Western blot analysis of CPS8-ComP
bioconjugates compared against ComP alone. a Anti-His channel probing
for Hexa-histidine-tagged ComP purified from SDB1 expressing CPS8 in the
presence or absence of PglS. b Anti-glycan channel probing for CPS8.
c Merged images for panels a and b. d–f Western blot analysis of CPS9V-
ComP bioconjugates compared against ComP alone. d Anti-His channel
probing for Hexa-histidine-tagged ComP purified from SDB1 expressing
CPS9V in the presence or absence of PglS. e Anti-glycan channel probing
for CPS9V. f Merged images for panels d and e. The red asterisk indicates
samples that were proteinase K treated for 1 h at 55 °C. Source data are
provided as a Source Data file
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activity. Moreover, sera from EPA-CPS8-vaccinated mice also
displayed bactericidal ranging from 88 to 10%, with three mice
displaying no killing activity. Expectedly, sera from EPA-
vaccinated mice did not display killing activity.

Discussion
Traditional chemical conjugate vaccine synthesis is complex,
costly, and laborious;15 therefore, new technologies to comple-
ment existing manufacturing pipelines are needed. One of these is
bioconjugation, which has been thoroughly progressing as a
feasible manufacturing alternative. The ability to glycosylate
carrier proteins with polysaccharides containing Glc as the
reducing end sugar has been elusive though, hindering the
development of pneumococcal bioconjugate vaccines covering
clinically relevant serotypes. Here we report the use of an O-
linking OTase system for generating pneumococcal bioconjugate
vaccines. Furthermore, we show that PglS naturally accepts
polysaccharides containing Glc at the reducing end, a feat pre-
viously thought technically impossible due to substrate specificity
limitations of all known conjugating enzymes.

The process of bioconjugation, described over a decade ago16, has
proven to be both technically and commercially feasible. This is best
evidenced by the 2015 partnership between GlaxoSmithKline and
GlycoVaxyn for more than 200 million US dollars. To date, bio-
conjugation relies on two conjugating enzymes, PglB and PglL, with

much of the focus on PglB due to its inherent ability to glycosylate
soluble proteins at a known sequon30. As such, PglB has been the
workhorse for the development and generation of bioconjugate
vaccines in clinical trials. Examples include the Flexyn2a bio-
conjugate18 against Shigella dysenteriae as well as a tetravalent
ExPEc4V bioconjugate17 vaccine against extraintestinal pathogenic
E. coli. Recently, PglB was used to generate a bioconjugate vaccine
against serotype 4 of pneumococcus37. However, serotype 4 con-
tains N-acetylgalactosamine as the reducing end sugar, which is one
of the known substrates for PglB.

PglL also has commercially applicable features given its ability to
transfer polysaccharides with Gal at the reducing end25. However,
until recently, PglL was thought to only glycosylate a few Neisseria
proteins31, most of which were membrane-associated proteins.
Research by the Wang group though has resulted in the generation
of a PglL-specific sequon that can be engineered onto any carrier
protein and efficiently be glycosylated by PglL, thus rendering the
production of PglL-manufactured bioconjugates more practical38,39.
However, PglB and PglL are not useful for the production of the
overwhelming majority pneumococcal serotypes due to the pre-
sence of Glc at their reducing ends.

The genome of A. baylyi ADP1 encodes for two O-OTases, a
PglL ortholog, which is a general OTase, and PglS, which gly-
cosylates a single protein, ComP28. ComP is orthologous to type
IV pilin proteins, like PilA from P. aeruginosa and PilE from
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Fig. 4 Immunoglobulin G (IgG) responses of mice vaccinated with ComP, Prevnar 13®, a monovalent bioconjugate and a trivalent bioconjugate. Groups of
mice were vaccinated with ComP alone, Prevnar 13®, a monovalent CPS14-ComP bioconjugate vaccine, or a CPS8-/CPS9V-/CPS14-ComP biconjugate
vaccine. Sera were collected on day 49 and analyzed for serotype-specific IgG responses via enzyme-linked immunosorbent assay (ELISA) compared
against sera collected on day 0. a–c No IgG responses were detected in placebo vaccinated-mice for serotypes 8 (a), 9V (b), or 14 (c). d–f Prevnar 13®-

vaccinated mice did not have detectable IgG responses to serotype 8 (d), but did have IgG responses specific to serotype 9V (e) and 14 (f). g–i Mice
vaccinated with a CPS14-ComP bioconjugate vaccine did not have IgG responses to serotypes 8 (g) or 9V (h), but did have IgG responses to serotype 14
(i). j–l Trivalent CPS8-/CPS9V-/CPS14-ComP bioconjugate vaccinated mice all had statistically significant IgG responses to serotypes 8 (j), 9V (k), and 14
(l). Unpaired t tests (Mann–Whitney) were performed to statistically analyze pre-immune sera from day 49 sera. P values for each case tested were
****p= 0.0001. Each dot represents a single vaccinated mouse (n= 10 mice per group). ELISA statistical calculations were performed on sera samples run
in technical triplicates. Error bars indicate the standard deviation of the mean. Source data are provided as a Source Data file
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Neisseria gonorrhoeae, both of which are glycosylated by the
OTases TfpO (also known as PilO)40 and PglL (also known as
PglO)41, respectively. TfpO glycosylates its cognate pilin at a C-
terminal serine residue33, which is not present in ComP. Some
Acinetobacter strains also possess TfpO orthologs28. PglL glyco-
sylates PilE at an internal serine located at position 63 (ref. 42).
ComP contains serine residues near position 63 and the sur-
rounding residues show limited conservation to PilE from N.
gonnorrhoeae; however, Ser 63 and its surrounding residues were
not part of the ComP glycosylation site. Instead, PglS glycosylates
ComP at a single serine residue located at position 84, a glyco-
sylation site which is not a canonical LCR, rich in proline, alanine,
and serine residues. The ability of PglS to transfer polysaccharides
containing Glc as the reducing end sugar coupled with the
identification of a previously unrecognized site of glycosylation
within the pilin superfamily demonstrates that PglS is a func-
tionally distinct OTase from PglL and TfpO, and suggests that
PglS belongs to a separate family of OTases.

Using the PglS/ComP OTase/acceptor protein pair, we have
generated the first polyvalent pneumococcal bioconjugate vaccine

and demonstrated its immunogenicity and efficacy using corre-
lates of protection previously established as gold standards for
pneumococcal conjugate vaccines43. First, we demonstrate
serotype-specific IgG responses of CPS8-/CPS9V-/CPS14-ComP-
vaccinated mice. In these experiments, we found that the IgG
response to all serotypes tested in bioconjugate-vaccinated mice
were robust as determined by ELISA. Second, we showed that
serum from a mouse vaccinated with pneumococcal bioconjugate
vaccine was protective based on bactericidal killing assays against
serotype 8 and 14 pneumococci. In addition, we have generated
the first pneumococcal bioconjugate vaccine containing a con-
ventional vaccine carrier. Namely, we have engineered the use of
a ComP fragment as a glycotag, which can be added to the C
terminus of EPA. We then paired the EPA fusion with the CPS8
polysaccharide and PglS, generating the EPA-CPS8 bioconjugate,
a first of its kind pneumococcal bioconjugate vaccine. The EPA-
CPS8 bioconjugate vaccine elicited high IgG titers specific to
serotype 8 that were protective as determined via bactericidal
killing. Importantly, vaccination with as little as 100 ng of poly-
saccharide in the EPA-CPS8 bioconjugate was able to provide
protection.

Even with the introduction and implementation of pneu-
mococcal conjugate vaccines over the past two decades, hun-
dreds of thousands of deaths are still attributed to
pneumococcus each year10. This is due in part to the 90+
serotypes of S. pneumoniae and the complex manufacturing
methods required to synthesize pneumococcal conjugate vac-
cines. Together, these factors hinder development of broader,
more protective and less costly variations of the vaccines. Our
bioconjugation platform for synthesizing pneumococcal con-
jugate vaccines from polysaccharides with Glc at the reducing
end could expedite development and lower manufacturing
costs. PglS-derived bioconjugates could complement existing
manufacturing pipelines or completely bypass the dependency
on chemical conjugation methodologies, enabling the pro-
duction of a more comprehensive pneumococcal conjugate
vaccine. Here we present data using the natural acceptor pro-
tein, ComP, as well as a proof-of-principle EPA fusion protein
as the targets of PglS glycosylation. However, future iterations
of the EPA vaccine construct will impart additional sites of
glycosylation to increase the glycan to protein ratio as well as
expand upon the number of serotypes in order to develop a
comprehensive pneumococcal bioconjugate vaccine. Regard-
less, we present compelling data indicating that these pneu-
mococcal bioconjugates have the potential for further
commercial development. Importantly, the platform technol-
ogy we present in this study is not limited to pneumococcal
polysaccharides, but in fact, has vast applicability for gen-
erating bioconjugate vaccines for many important human and
animal pathogens that are incompatible with PglB and PglL.
Notable examples include the human pathogens Klebsiella
pneumoniae and Group B Streptococcus as well as the swine
pathogen Streptococcus suis, all immensely relevant pathogens
with no licensed vaccines available.

Methods
Bacterial strains, plasmids, and growth condition. Strains and plasmids used in
this work are listed in Supplemental Table 1. Unless otherwise stated, E. coli
strains were grown in Terrific Broth (TB) at 37 °C overnight for ComP glyco-
protein production or Super Optimal Broth (SOB) at 30 °C overnight for EPA
glycoprotein production. Streptococcus pneumoniae strains were grown in brain
heart infusion (BHI) broth or sheep blood agar plates at 37 °C in 5% CO2. For
plasmid selection, the antibiotics were used at the following concentrations:
ampicillin (100 μg mL−1), tetracycline (20 μg mL−1), chloramphenicol
(12.5 μg mL−1), kanamycin (20 μg mL−1), and spectinomycin (80 μg mL−1) were
added as needed. Oligonucleotides used in this study are listed in
Supplementary Table 2.
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Fig. 5 Bactericidal activity of sera from vaccinated mice against
Streptococcus pneumoniae serotypes 8 and 14. Opsonophagocytosis assays
(OPAs) of sera from mice vaccinated with either buffer control (n= two
female mice), Prevnar 13® (n= two female mice), or bioconjugate vaccine
against both S. pneumoniae serotypes 8 (a) and 14 (b) (n= two female
mice). OPAs were performed twice in order to have two biological
replicates for interpretation. Serotype-specific commercial rabbit anti-S.
pneumoniae sera were used as positive controls. A 5% (v v−1) sample
serum and a bacterial multiplicity of infection (MOI) of 0.01 were added to
fresh whole blood from naive mice to perform the assay. Viable bacterial
counts were performed after 4 h of incubation. To determine bacterial
killing, viable bacterial counts from tubes incubated with sample sera were
compared to those incubated with control naive mouse sera. Results are
expressed as percent bacterial killing for individual mice, with error bars
representing the standard deviation of the mean. Source data are provided
as a Source Data file
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Heterologous glycosylation in E. coli. Escherichia coli SDB1 was made electro-
competent by growing cells to mid-logarithmic stage followed by two rounds of
washing in 10% glycerol and a final resuspension in 1/250th of the original culture
volume. Cells were electroporated with plasmids encoding the glycan synthesis
loci, acceptor proteins, and OTases. Colonies were picked and grown at 37 °C in
TB or SOB with appropriate antibiotic selection and immediately induced with
0.05–0.1 mM isopropyl β-D-1-thiogalactopyranoside or 0.2% arabinose as needed
and left overnight at 37 °C. Cultures requiring arabinose induction received a
second dose of arabinose after 4 h. Cell pellets were obtained at stationary phases
and prepared for western blot analysis.

Western blotting. Cell lysates containing the equivalent of OD600= 0.1 units were
loaded on 12.5% or 7% in-house prepared sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE) gels, which were then transferred to nitrocellulose
membranes (Bio-Rad). Western blots were employed to determine protein mod-
ification. Primary antibodies included Pneumococcus Type 8 Serum (Ref. # 16751),
Pneumococcus Type 9 Serum (Ref. # 16903), and Pneumococcus Type 14 Serum
(Ref. # 16751), all used at 1:1000 dilutions. Additional antibodies included 6×-His
Tag Monoclonal Antibody (HIS.H8) (Catalog # MA1-21315), used at 1:1000, and
anti-Pseudomonas exotoxin A antibody (P2318-1ML), used at 1:5000. Secondary
antibodies included Licor IRDye 680RD goat anti-mouse (925-68070) and goat
anti-rabbit 800CW (926-32211) used at 1:10,000 dilutions. Western blotting was
performed according to our previously published protocols28. Briefly, samples were
separated by SDS-PAGE, transferred to nitrocellulose, blocked with Licor TBS
blocking buffer, incubated with primary antibodies for 30 min, washed three times
in TBS supplemented with Tween-20, incubated with secondary antibodies for
30 min, washed three times with TBS supplemented with Tween-20, and then
visualized using an Odyssey Infrared Imaging System (LiCor Biosciences, USA).

Purification of proteins and glycoproteins. C terminally Hexa-histidine-tagged
ComP and ComP bioconjugates were purified from E. coli total membrane

preparations. Cells were grown overnight in 2 L of TB at 37 °C, washed with
phosphate-buffered saline (PBS) buffer, and re-suspended in 60 mL of the same
buffer. Cells were lysed by two rounds of cell disruption at approximately 20 kPSI
using a French press (Aminco), followed by the addition of a protease inhibitor
cocktail (Roche). Lysates were centrifuged twice for 30 min at 20,000 × g to pellet
cell debris. Supernatants were ultra-centrifuged at 100,000 × g for 60 mins to pellet
total membranes. The pellets were re-suspended in PBS buffer containing 0.5%
n-dodecyl-β-D-maltoside (DDM) and membrane proteins were solubilized by
tumbling for 48 h. An equal volume of PBS was added to the suspension to reduce
detergent concentration to 0.25% and the suspension was ultra-centrifuged at
100,000 × g for 60 mins. Solubilized membranes were filtered through 0.45 and
0.22 μm filters and loaded on a His-Trap HP column (GE Healthcare) fitted to an
ÄKTA purifier (Amersham Biosciences, Sweden). The column was equilibrated
with a PBS/DDM buffer containing 20 mM imidazole prior to loading the sample.
Unbound proteins were removed by washing the column with seven column
volumes of buffer containing 20 and 30 mM imidazole in PBS stepwise. To elute
proteins bound to the column, a gradient elution with an incremental increase in
imidazole concentration was used. The majority of unconjugated and conjugated
ComP eluted between 180 and 250 mM imidazole. Imidazole was removed by an
overnight round of dialysis followed by two 2-h rounds through a 3.5 kDa dialysis
membrane (Spectrum labs) in a 250 mL dialysis buffer composed of PBS con-
taining 0.25% (w v−1) DDM. The final theoretical concentration of imidazole post
dialysis was about 0.007 mM. Proteins were quantified using a DC kit (Bio-Rad),
after which the samples were diluted to the appropriate concentrations for mouse
immunizations.

C terminally Hexa-histidine-tagged EPA fusion proteins were purified from E.
coli lysates lysed using mechanical disruption at 35,000 PSI using a cell disruptor
from Constant Systems. Lysates were clarified at 15,000 × g for 30 min. The
supernatents were passed over 3 mL of nickel NTA agarose, washed with 10
column volumes of buffer containing 20 mM Tris, 10 mM imidazole, 500 mM
NaCl, pH 8.0, and eluted with the same buffer containing 300 mM imidazole.
Eluted proteins were concentrated using an Amicon Ultra-15 concentrator,
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Fig. 6 Analysis of exotoxin A from Pseudomonas aeruginosa (EPA) glycosylation with the CPS8 capsular polysaccharide. Western blot analysis of EPA-CPS8
bioconjugates compared against EPA alone. a(Left panel Anti-His channel probing for Hexa-histidine-tagged EPA purified from SDB1 expressing CPS8 in
the presence or absence of PglS. a (Middle panel) Anti-glycan channel probing for CPS8. a (Right panel) Merged images for left and middle panels. b EPA-
CPS8 separated on a SDS- polyacrylamide gel stained with Coomassie. c, d Intact protein mass spectrometry analysis showing the MS1 mass spectra for
purified EPA-CPS8. The EPA fusion protein has a theoretical mass of 79,526.15Da and can be observed as the peak at 79,514.76 Da. The EPA fusion protein
was also observed in multiple states of increasing mass corresponding to the CPS8 repeating subunit, which has a theoretical mass of 662Da. Varying
glycoforms of the EPA-CPS8 were observed and are denoted by “gnumeric”, where “g” stands for glycoform and the “numeric” corresponds to the number of
repeating CPS8 subunits. The EPA fusion protein was modified with up to 11 repeating subunits of the CPS8 glycan. Panel d provides a zoomed in view of
the varying EPA-CPS8 glycoforms. Source data are provided as a Source Data file
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centrifuged at 10,000 × g for 10 min, and polished on a superdex 200 size exclusion
column. Fractions enriched for EPA proteins pooled, concentrated, and buffer
exchanged into PBS. Proteins were quantified using a DC kit for total protein
concentrations and a modified anthrone sulfuric method for carbohydrate
estimation. Briefly, to 100 μL of sample, 4 mL of a 2 mgmL−1 anthrone-

concentrated sulfuric acid solution was rapidly added. The sample was vortexed
and heated in boiling water bath for 10 min. Aliquots were measured for
absorbance at 620 nm. Carbohydrate estimations were based off a standard curve of
the type 8 pneumococcal CPS from ATCC (cat. # ATCC 20-X).

Murine model immunizations. All murine immunizations complied with all
relevant ethical regulations for animal testing and research. Immunizations were
conducted at the Southern Alberta Cancer Research Institute antibody services and
Washington University School of Medicine in St. Louis according to institutional
guidelines and received approval from the University of Calgary Animal Research
and Education Executive Committee and the Institutional Animal Care and Use
Committee at Washington University in St. Louis, respectively. For the CPS14-
ComP monovalent immunization, 4–6-week-old female BALB/c mice were injected
with 50 μL of purified protein/glycoprotein (3 µg total protein) with 50 μL of
Freund’s adjuvant. Two groups of mice (n= 10) were injected with either ungly-
cosylated ComP (placebo) or CPS14-ComP bioconjugate. Sera from the mice were
obtained before immunizations and 7, 21, 35, and 49 days post immunizations.
Booster doses were given on days 14 and 28. The same procedure was followed for
the trivalent immunization, except four groups of mice (n= 10) were used for the
four different immunization groups. These groups were injected with 100 µL
containing 3 µg of unconjugated ComP (placebo) and Freund’s adjuvant, 100 µL
containing 3 µg of ComP-CPS14 conjugate and Freund’s adjuvant, 100 µL con-
taining 9 µg of a glycoprotein mixture (ComP-CPS8, ComP-CPS9V, and ComP-
CPS14) and Freund’s adjuvant, or 100 µL of a 1:10 diluted stock of Prevnar 13® and
Freund’s adjuvant. CPS-ComP bioconjugates were formulated by total protein for
this immunization.

Another trivalent immunization experiment was conducted with groups of
three 4–6-week-old female BALB/c mice. Each immunization group was
subcutaneously injected with 100µL of a 1:1 immunogen (3 µg of protein of each of
the trivalent bioconjugate or a 1:10 diluted stock of Prevnar 13®) to Imject Alum
Adjuvant. Mice were vaccinated on days 0, 14, and 28 and then sacrificed on day 42
for sera collection.

A fourth immunization experiment was conducted with groups of three
4–6-week-old BALB/c mice (five female and five male per group). Mice were
immunized subcutaneously with 100 µL of EPA (5 µg total protein), 100 µL of
ComP-CPS8 (5 µg total polysaccharide), or 100 µL of EPA-CPS8 (0.1 µg total
polysaccharide) on days 0, 14, and 28 and then sacrificed on day 42 for sera
collection. Vaccines were formulated 1:1 with Imject Alum Adjuvant.

Enzyme-linked immunosorbent assays. Streptococcus pneumoniae strains grown
overnight in BHI broth at 37 °C in 5% CO2 were washed in PBS and the optical
density was adjusted to OD600= 0.6 units. Cells were heat inactivated at 60 °C for
2–4 h followed by immobilization on high binding 96-well plates (Corning) by
adding 50 μL per well. Plates were incubated on a tumbler overnight at 4 °C. The
following day, wells were washed three times with PBST (phosphate-buffered
saline-Tween) (100 μL per well) before blocking with 5% skimmed milk (250 μL
per well) for 2 h. The wells were washed three times with PBST. Plates were
incubated for 1 h at room temperature with mouse sera (100 μL per well) at a 1:500
dilution in 2.5% skimmed milk in PBST for assessing immunogenicity of ComP
bioconjugates. For the positive control, commercial rabbit polyclonal antibodies
against CPS were used (catalog numbers described above). Negative control wells
were treated with skimmed milk without any primary antibody. After incubation
with the primary antibody, wells were washed three times with PBST followed by a
1 h incubation with secondary HRP-conjugated anti-mouse IgG (Cat. # 7076)
diluted 1:4000 (100 μL per well) in 2.5% skimmed milk in PBST. After incubation,
the wells were washed three times with PBST and 100 μL of the chromogenic
substrate TMB (Cell Signaling Technology) was added to each well. Plates were
incubated at room temperature for 5 min, after which the absorbance at 650 nm
was measured using a BioTek™ plate reader.

For IgG titer determinations, ELISA plates were coated with 100 µL of 1 × 108

CFUmL−1 of S. pneumoniae serotype 8 grown approximately to mid-log phase.
Bacteria were washed twice in PBS and suspended in water prior to coating. ELISA
plates were allowed to air dry in a biological hood for 24 h. Fifty microliters of
methanol were then added to each well and allowed to air dry. Plates were stored in
a re-sealable bag protected from the light until use. To perform the titration of
mouse total IgG antibodies, day 42 sera was serially diluted (2-fold) in PBST and
antibodies were detected using an anti-mouse, HRP-linked IgG (Cell Signaling
Technology # 7076) diluted 1:4000. For mouse serum titrations, the reciprocal of
the last serum dilution that resulted in an optical density at 450 nm equal to or
lower than 0.2 was considered the titer of that serum. For representation purposes,
negative titers (less than or equal to the cutoff) were given an arbitrary titer value of
10. Inter-plate variations were controlled by including an internal reference positive
control on each plate. This control was hyper-immune sera from a mouse
previously immunized with the ComP-CPS8 bioconjugate vaccine. The ELISA
reactions in TMB were stopped when an OD450nm of ~1 was obtained for the
internal positive control.

Site-directed mutagenesis. Mutagenic primers were designed using Primer X, a
web-based primer design program (http://www.bioinformatics.org/primerx/).
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Fig. 7 Analysis of immune responses to ComP-CPS8 and EPA-CPS8
bioconjugates in mice. a Titers of CPS8 IgG antibodies in mice immunized
with CPS8 bioconjugate vaccines. Mouse groups were as follows: EPA (n= 9,
mice vaccinated with 5 µg of total protein), ComP-CPS8 (n= 10, mice
vaccinated with 5 µg total polysaccharide), and EPA-CPS8 (n= 10, mice
vaccinated with 100 ng of total polysaccharide). All mice were immunized
with 100 µL of a vaccine diluted 1:1 with Imject Alum Adjuvant on days 1, 14,
and 28. Sera were collected on day 4. For the titration, enzyme-linked
immunosorbent assay (ELISA) plates were coated with whole-cell serotype 8
pneumococci and incubated with 2-fold serial dilutions of sera. Each dot
represents a single vaccinated mouse (n= 10 mice per group). ELISA
statistical calculations were performed on sera samples run in technical
triplicates. Titers for individual mice are shown, with error bars representing
the standard error of the mean. Statistically significant titers compared to the
EPA placebo group are denoted with asterisk and were determined using
Kruskal–Wallis one-way analysis of variance (ANOVA). **P=0.0223 and
****P < 0.0001. For analysis and representation purposes, negative titer values
(<100) were given an arbitrary value of 10. b Opsonophagocytosis killing of S.
pneumoniae serotype 8 by day 42 sera from mice immunized with ComP-
CPS8 and EPA-CPS8 bioconjugate vaccines. The same mouse groups
described for the IgG titers were employed for the OPA. A 40% (v v−1)
sample of serum and bacterial multiplicity of infection (MOI) of 0.01 were
added to fresh whole blood from naive mice to perform the assay. Results are
expressed as percent bacterial killing for individual mice, with error bars
representing the standard deviation of the mean. Statistically significant killing
compared to the EPA placebo group is denoted with asterisk and were
determined using Kruskal–Wallis one-way ANOVA. **P=0.0015. Source
data are provided as a Source Data file
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Primers used are listed in Supplemental Table 2. PCR reactions were performed
using Pfu polymerase and 2–10 ng of pMN2 as template. The PCR reaction con-
sisted of an initial denaturation of 30 s at 95 °C followed by 16 cycles of 30 s at
95 °C, 60 s at 55 °C, 360 s at 68 °C with no final extension. PCR reactions were DpnI
digested for 2 h to remove the template plasmid, then transformed into electro-
competent DH5α cells, and grown on ampicillin for plasmid selection. Colonies
were sequenced to confirm mutagenesis.

Digestion of ComP-CPS14 conjugate. CPS14-ComP was affinity purified and
separated via SDS-PAGE and Coomassie stained. SDS-PAGE separated CPS14-
ComP bands were excised and destained in a 50:50 solution of 50 mM
NH4HCO3:100% ethanol for 20 min at room temperature with shaking at 750 rpm.
Destained bands were then washed with 100% ethanol, vacuum dried for 20 min,
and rehydrated in 10 mM dithiothreitol (DTT) in 50 mM NH4HCO3. Reduction
was carried out for 60 min at 56 °C with shaking. The reducing buffer was then
removed and the gel bands washed twice in 100% ethanol for 10 min to ensure the
removal of remaining DTT. Reduced ethanol washed samples were sequentially
alkylated with 55 mM iodoacetamide in 50 mM NH4HCO3 in the dark for 45 min
at room temperature. Alkylated samples were then washed with two rounds of
Milli-Q water and 100% ethanol then vacuum dried. Alkylated samples were then
rehydrated with 10 ng µl−1 GluC (Promega, Madison, WI, USA) in 40 mM
NH4HCO3 at 4 °C for 1 h. Excess GluC was removed, gel pieces were covered in
40 mM NH4HCO3, and incubated for 24 h at 37 °C. Peptides were concentrated
and desalted using C18 stage tips44,45 and stored on tip at 4 °C. Peptides were eluted
in Buffer B (0.5% acetic acid, 80% MeCN) and dried before analysis by liquid
chromatography-mass spectrometry (LC-MS).

Reversed phase LC-MS and HCD MS-MS. Purified peptides were re-suspended
in Buffer A* and separated using an in-house packaged 25 cm, 75 µm inner dia-
meter, 360 μm outer diameter, 1.7 µm 130 Å CSH C18 (Waters, Manchester, UK)
reverse-phase analytical column with an integrated HF-etched nESI tip. Samples
were loaded directly onto the column using an ACQUITY UPLC M-Class System
(Waters) at 600nLmin−1 for 20 min with Buffer A (0.1% formic acid (FA)) and
eluted at 300nLmin−1 using a gradient altering the concentration of Buffer B
(99.9% acetonitrile, 0.1% FA) from 2 to 32% B over 60 min, then from 32 to 40% B
in the next 10 min, then increased to 80% B over 8 min period, held at 100% B for
2 min, and then dropped to 2% B for another 10 min. Reverse-phase separated
peptides were infused into a Q-Exactive (Thermo Scientific) mass spectrometer and
data acquired using data-dependent acquisition. Two methods were used to
identify putative glycopeptides. Method A aimed to enable robust peptide identi-
fication in which one full precursor scan (resolution 70,000; 350–1850m/z, AGC
target of 1 × 106) was followed by 10 data-dependent higher energy collisional
dissociation (HCD) MS-MS events (resolution 35k AGC target of 1 × 105 with a
maximum injection time of 110 ms, NCE 26 with 25% stepping) with 90 s dynamic
exclusion enabled. Method B aimed to enable more complete characterization of
glycans within glycopeptides with one full precursor scan (resolution 70,000;
350–1850m/z, AGC target of 1 × 106) followed by 10 data-dependent HCD MS-MS
events (resolution 35k AGC target of 5 × 105 with a maximum injection time of
250 ms, NCE 13 with 25% stepping) with 90 s dynamic exclusion enabled.

Database interrogation of identified glycopeptides. Raw files were processed
manually to identify potential glycopeptides based on the diagnostic oxonium
204.08m/z ion. Putative glycopeptide-derived scans were manually inspected and
identified as possible GluC-derived ComP glycopeptides based on the presence of
an intense deglycosylated ComP-derived peptide ion, matching within 10 ppm
using the Expasy FindPept tool (https://web.expasy.org/findpept/). To facilitate
peptide assignments, the resulting glycopeptides was manually annotated according
to ref. 46 with the aid of the Protein Prospector tool MS-Product (http://prospector.
ucsf.edu/prospector/cgi-bin/msform.cgi?form=msproduct).

Intact protein analysis. Intact analysis was performed using a 6520 Accurate Mass
Quadrupole Time-of-Flight mass spectrometer (Agilent, Santa Clara, CA, USA).
Protein samples were re-suspended in 2% ACN, 0.1% trifluoroacetic acid, and
immediately loaded onto a C5 Jupiter 5 μm 300 Å 50 mm × 2.1 mm column
(Phenomenex, Torrance, CA, USA) using an Agilent 1200. Samples were desalted
by washing with buffer A (2% ACN, 0.1% FA) for 4 min and then separated with a
12 min linear gradient from 2 to 100% buffer B (80% ACN, 0.1% FA) at a flow rate
of 0.200 mLmin−1. MS1 mass spectra were acquired at 1 Hz between a mass range
of 300–3000m/z. Intact mass analysis and deconvolution was performed using
MassHunter B.06.00 (Agilent).

Opsonophagocytosis assay. The assays were performed as previously
described47,48 and are briefly described below. Blood collection. Blood was collected
by intracardiac puncture from naive female mice (Charles River, Wilmington,
MA, USA), treated with sodium heparin, then diluted to obtain 6.25 × 106

leukocytes mL−1 in RPMI-1640 supplemented with 5% heat-inactivated fetal
bovine serum, 10 mM HEPES, 2mM L-glutamine, and 50 μM 2-mercaptoethanol.
All reagents were from Gibco (Invitrogen, Burlington, ON, Canada). Bacterial
suspension preparation. Isolated colonies on sheep blood agar plates of either S.

pneumoniae serotypes 8 or 14 (Statens Serum Institut, Denmark) were inoculated
in 5 mL of Todd–Hewitt Broth (THB) (Oxoid, Thermo Fisher Scientific, Nepean,
Canada) and incubated for 16 h at 37 °C with 5% CO2. Working cultures were
prepared by transferring 0.1 mL of 16 h cultures into 10 mL of THB, which was
then incubated for 5 h. Bacteria were washed three times and re-suspended in PBS
to obtain an OD600 value of 0.6, which corresponds to 1.5 × 108 and colony-
forming units (CFU)mL−1 and to 3.5 × 108CFUmL−1 for serotype 8 and serotype
14, respectively. Final bacterial suspensions were prepared in complete cell
culture medium to obtain a concentration of 6.25 × 104CFUmL−1. The number of
CFUmL−1 in the final suspensions was determined by plating samples onto
Todd–Hewitt agar (THA). Opsonophagocytosis Assay. Diluted whole blood (5 × 105

total leukocytes) was mixed with 5 × 103 CFU of S. pneumoniae serotype 8 or 14
(multiplicity of infection of 0.01) and 5% (v v−1) of serum from control (placebo)
or vaccinated mice in a microtube to a final volume of 0.2 mL. Microtubes were
incubated for 4 h at 37 °C with 5% CO2, with shaking. After incubation, viable
bacterial counts were performed on THA. Tubes with the addition of naive mouse
sera or commercial rabbit anti-S. pneumoniae types 8 or 14 serum (Statens Serum
Institut, Denmark) were used as negative and positive controls, respectively. The
percentage of bacterial killing was determined using the following formula: percent
bacteria killed= [1− (bacteria recovered from sample tubes/bacteria recovered
from negative control tubes with naive sera)] × 100.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The authors declare that data supporting the findings of this study are available within
the paper and its supplemental files. The source data underlying Figs. 1, 3, 4, 5, 6, 7 and
supplemental Figs. 2 and 5 are provided as a Source Data file.
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