328 research outputs found

    An investigation on the effects of chamber wall's elasticity on blood flow in a LVAD pump

    Full text link
    Left Ventricular Assist Device (LVAD) is a pump that is designed to provide life support to patients with end stage heart failure. In an effort to ensure the safety of LVAD, the pumping mechanics must not exert excessive stress on the blood or hemolysis would occur. This study investigates the effects of chamber wall's elasticity (isotropic) from common materials on blood flow in a LVAD, especially the shear stress resulted therein. The materials considered are titanium, diamond-like carbon (DLC), 2-methacryloyloxy ethyl phosphorylcholine (MPC) polymer, segmented polyurethane (SPU), polyurethane (PEU), and a material with properties corresponding to blood vessels, which is used as the reference. The study employs a Fluid Structure Interaction (FSI) simulation software suite to couple Computational Fluid Dynamics (CFD) with mechanical simulation (ANSYS). The test system is a centrifugal pump based on a 2012-Jarvik Patent. The flow through the pump is driven by an impeller rotating at set speed to achieve a pre-set blood flowrate. The results show that there is no significant difference in turbulent dissipation rate among the different chamber-wall materials, with PEU giving closest figure to the blood vessels'. On the other hand, regarding wall shear stress which is an important factor in hemolysis, titanium, DLC and SPU result in similar maximum values, whereas MPC, PEU and blood vessel material give noticeably lower ones

    Offloading Energy Efficiency with Delay Constraint for Cooperative Mobile Edge Computing Networks

    Full text link
    © 2018 IEEE. We propose a novel edge computing network architecture that enables edge nodes to cooperate in sharing computing and radio resources to minimize the total energy consumption of mobile users while meeting their delay requirements. To find the optimal task offloading decisions for mobile users, we first formulate the joint task offloading and resource allocation optimization problem as a mixed integer non-linear programming (MINLP). The optimization involves both binary (offloading decisions) and real variables (resource allocations), making it an NP-hard and computational intractable problem. To circumvent, we relax the binary decision variables to transform the MINLP to a relaxed optimization problem with real variables. After proving that the relaxed problem is a convex one, we propose two solutions namely ROP and IBBA. ROP is adopted from the interior point method and IBBA is developed from the branch and bound algorithm. Through the numerical results, we show that our proposed approaches allow minimizing the total energy consumption and meet all delay requirements for mobile users

    Kinetics of charge carrier recombination in β- Ga2 O3 crystals

    Full text link
    © 2018 American Physical Society. Cathodoluminescence (CL) spectra were measured to determine the characteristics of luminescence bands and carrier dynamics in β-Ga2O3 bulk single crystals. The CL emission was found to be dominated by a broad UV emission peaked at 3.40 eV, which exhibits strong quenching with increasing temperature; however, its spectral shape and energy position remain virtually unchanged. We observed a superlinear increase of CL intensity with excitation density; this kinetics of carrier recombination can be explained in terms of carrier trapping and charge transfer at Fe impurity centers. The temperature-dependent properties of this UV band are consistent with weakly bound electrons in self-trapped excitons with an activation energy of 48±10meV. In addition to the self-trapped exciton emission, a blue luminescence (BL) band is shown to be related to a donor-like defect, which increases significantly in concentration after hydrogen plasma annealing. The point defect responsible for the BL, likely an oxygen vacancy, is strongly coupled to the lattice exhibiting a Huang-Rhys factor of ∼7.3

    Investigation of the microbial communities colonizing prepainted steel used for roofing and walling

    Get PDF
    © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd. Microbial colonization of prepainted steel, commonly used in roofing applications, impacts their aesthetics, durability, and functionality. Understanding the relevant organisms and the mechanisms by which colonization occurs would provide valuable information that can be subsequently used to design fouling prevention strategies. Here, next-generation sequencing and microbial community finger printing (T-RFLP) were used to study the community composition of microbes colonizing prepainted steel roofing materials at Burrawang, Australia and Kapar, Malaysia over a 52-week period. Community diversity was low and was dominated by Bacillus spp., cyanobacteria, actinobacteria, Cladosporium sp., Epicoccum nigrum, and Teratosphaeriaceae sp. Cultivation-based methods isolated approximately 20 different fungi and bacteria, some of which, such as E. nigrum and Cladosporium sp., were represented in the community sequence data. Fluorescence in situ hybridization imaging showed that fungi were the most dominant organisms present. Analysis of the sequence and T-RFLP data indicated that the microbial communities differed significantly between locations and changed significantly over time. The study demonstrates the utility of molecular ecology tools to identify and characterize microbial communities associated with the fouling of painted steel surfaces and ultimately can enable the targeted development of control strategies based on the dominant species responsible for fouling

    Glucose starvation-induced dispersal of pseudomonas aeruginosa biofilms is camp and energy dependent

    Get PDF
    Carbon starvation has been shown to induce a massive dispersal event in biofilms of the opportunistic pathogen Pseudomonas aeruginosa; however, the molecular pathways controlling this dispersal response remain unknown. We quantified changes in the proteome of P. aeruginosa PAO1 biofilm and planktonic cells during glucose starvation by differential peptide-fingerprint mass-spectrometry (iTRAQ). In addition, we monitored dispersal photometrically, as a decrease in turbidity/opacity of biofilms pre-grown and starved in continuous flow-cells, in order to evaluate treatments (e.g. inhibitors CCCP, arsenate, chloramphenicol, L-serine hydroxamate) and key mutants altered in biofilm development and dispersal (e.g. nirS, vfr, bdlA, rpoS, lasRrhlR, Pf4-bacteriophage and cyaA). In wild-type biofilms, dispersal started within five minutes of glucose starvation, was maximal after 2 h, and up to 60% of the original biomass had dispersed after 24 h of starvation. The changes in protein synthesis were generally not more than two fold and indicated that more than 100 proteins belonging to various classes, including carbon and energy metabolism, stress adaptation, and motility, were differentially expressed. For the different treatments, only the proton-ionophore CCCP or arsenate, an inhibitor of ATP synthesis, prevented dispersal of the biofilms. For the different mutants tested, only cyaA, the synthase of the intracellular second messenger cAMP, failed to disperse; complementation of the cyaA mutation restored the wild-type phenotype. Hence, the pathway for carbon starvation-induced biofilm dispersal in P. aeruginosa PAO1 involves ATP production via direct ATP synthesis and proton-motive force dependent step(s) and is mediated through cAMP, which is likely to control the activity of proteins involved in remodeling biofilm cells in preparation for planktonic survival. © 2012 Huynh et al

    Endothelial nitric oxide pathways in the pathophysiology of dengue: a prospective observational study.

    Get PDF
    Background: Dengue can cause increased vascular permeability that may lead to hypovolemic shock. Endothelial dysfunction may underlie this; however the association of endothelial nitric oxide pathways with disease severity is unknown. Methods: We performed a prospective observational study in two Vietnamese hospitals, assessing patients presenting early (<72 hours fever) and patients hospitalized with warning signs or severe dengue. The reactive hyperaemic index (RHI), which measures endothelium-dependent vasodilation and is a surrogate marker of endothelial function and NO bioavailability was evaluated using peripheral artery tonometry (EndoPAT) and plasma levels of L-arginine, Arginase-1 and ADMA were measured at serial time-points. The main outcome of interest was plasma leakage severity. Results: 314 patients were enrolled, median age of the participants was 21 (IQR 13-30) years. No difference was found in the endothelial parameters between dengue and other febrile illness (OFI). Considering dengue patients, the RHI was significantly lower for patients with severe plasma leakage compared to those with no leakage (1.46 vs. 2.00, P<0.001), over acute time-points, apparent already in the early febrile phase (1.29 vs. 1.75, P=0.012). RHI correlated negatively with arginase-1, and positively with L-arginine (P=0.001). Endothelial dysfunction/NO bioavailability is associated with worse plasma leakage, occurs early in dengue illness and correlates with hypoargininaemia and high arginase-1 levels

    The glutathione biosynthetic pathway of Plasmodium is essential for mosquito transmission

    Get PDF
    1Infection of red blood cells (RBC) subjects the malaria parasite to oxidative stress. Therefore, efficient antioxidant and redox systems are required to prevent damage by reactive oxygen species. Plasmodium spp. have thioredoxin and glutathione (GSH) systems that are thought to play a major role as antioxidants during blood stage infection. In this report, we analyzed a critical component of the GSH biosynthesis pathway using reverse genetics. Plasmodium berghei parasites lacking expression of gamma-glutamylcysteine synthetase (γ-GCS), the rate limiting enzyme in de novo synthesis of GSH, were generated through targeted gene disruption thus demonstrating, quite unexpectedly, that γ-GCS is not essential for blood stage development. Despite a significant reduction in GSH levels, blood stage forms of pbggcs− parasites showed only a defect in growth as compared to wild type. In contrast, a dramatic effect on development of the parasites in the mosquito was observed. Infection of mosquitoes with pbggcs− parasites resulted in reduced numbers of stunted oocysts that did not produce sporozoites. These results have important implications for the design of drugs aiming at interfering with the GSH redox-system in blood stages and demonstrate that de novo synthesis of GSH is pivotal for development of Plasmodium in the mosquito

    Nanohybrids of Silver Particles Immobilized on Silicate Platelet for Infected Wound Healing

    Get PDF
    Silver nanoparticles supported on nanoscale silicate platelets (AgNP/NSP) possess interesting properties, including a large surface area and high biocide effectiveness. The nanohybrid of AgNP/NSP at a weight ratio 7/93 contains 5-nm Ag particles supported on the surface of platelets with dimensions of approximately 80×80×1 nm3. The nanohybrid expresses a trend of lower cytotoxicity at the concentration of 8.75 ppm Ag and low genotoxicity. Compared with conventional silver ions and the organically dispersed AgNPs, the nanohybrid promotes wound healing. We investigated overall wound healing by using acute burn and excision wound healing models. Tests on both infected wound models of mice were compared among the AgNP/NSP, polymer-dispersed AgNPs, the commercially available Aquacel, and silver sulfadiazine. The AgNP/NSP nanohybrid was superior for wound appearance, but had similar wound healing rates, vascular endothelial growth factor (VEGF)-A levels and transforming growth factor (TGF)-β1 expressions to Aquacel and silver sulfadiazine

    Energy and macronutrient intakes in preschool children in urban areas of Ho Chi Minh City, Vietnam

    Get PDF
    Background: An increasing prevalence of overweight and obesity has been documented in preschool children in Ho Chi Minh City (HCMC), Vietnam. However, little is known about what preschool children in HCMC eat or how well their nutrient intake meets nutrient recommendations. This study aims to describe the energy and macronutrient intake and compare these nutrient intakes with the recommendations for Vietnamese children aged four to five years. Methods: The data comes from the baseline measurement of a one year follow-up study on obesity in 670 children attending kindergartens in HCMC. Dietary information for each child at the school and home settings was collected using Food Frequency Questionnaires (FFQs), by interviewing teachers and parents or main caregivers. The average energy and nutrient intake in a day was calculated. The proportion of children with energy intake from macronutrients meeting or exceeding the recommendations was estimated based on the 2006 recommended daily allowance (RDA) for Vietnamese children in this age group. Results: The dietary intake of the participants contained more energy from protein and fat, particularly animal protein and fat, and less energy from carbohydrates, than the RDA. Most children (98.1%) had mean energy intake from protein greater than the recommended level of 15%, and no child obtained energy from animal fat that was in accordance with the recommendation of less than 30% of the total fat intake. Nearly one half of children (46.5%) consumed less than the advised range of mean energy intake from carbohydrate (60%–70%). Conclusion: In this preschool child population in HCMC, in which obesity is emerging as major public health problem, there is an imbalance in dietary intake. Healthy eating programs need to be developed as a part of an obesity prevention program for young children in HCMC
    • …
    corecore