CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Kinetics of charge carrier recombination in β- Ga2 O3 crystals
Authors
TT Huynh
A Kuramata
+3 more
LLC Lem
MR Phillips
C Ton-That
Publication date
29 October 2018
Publisher
'American Physical Society (APS)'
Doi
Abstract
© 2018 American Physical Society. Cathodoluminescence (CL) spectra were measured to determine the characteristics of luminescence bands and carrier dynamics in β-Ga2O3 bulk single crystals. The CL emission was found to be dominated by a broad UV emission peaked at 3.40 eV, which exhibits strong quenching with increasing temperature; however, its spectral shape and energy position remain virtually unchanged. We observed a superlinear increase of CL intensity with excitation density; this kinetics of carrier recombination can be explained in terms of carrier trapping and charge transfer at Fe impurity centers. The temperature-dependent properties of this UV band are consistent with weakly bound electrons in self-trapped excitons with an activation energy of 48±10meV. In addition to the self-trapped exciton emission, a blue luminescence (BL) band is shown to be related to a donor-like defect, which increases significantly in concentration after hydrogen plasma annealing. The point defect responsible for the BL, likely an oxygen vacancy, is strongly coupled to the lattice exhibiting a Huang-Rhys factor of ∼7.3
Similar works
Full text
Available Versions
OPUS - University of Technology Sydney
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:opus.lib.uts.edu.au:10453/...
Last time updated on 18/10/2019