106 research outputs found

    Survival probability of larval sprat in response to decadal changes in diel vertical migration behavior and prey abundance in the Baltic Sea

    Get PDF
    We employed a coupled three-dimensional biophysical model to explore long-term inter- and intra-annual variability in the survival of sprat larvae in the Bornholm Basin, a major sprat spawning area in the Baltic Sea. Model scenarios incorporated observed decadal changes in larval diel vertical distribution and climate-driven abiotic and biotic environmental factors including variability in the abundance of different, key prey species (calanoid copepods) as well as seasonal changes, long-term trends, and spatial differences in water temperature. Climate forcing affected Baltic sprat larval survival both directly (via changes in temperature) and indirectly (via changes in prey populations). By incorporating observed changes in larval diel vertical migration, decadal changes in modeled and observed survival of Baltic sprat agreed well. Higher larval survival (spawning stock biomass) was predicted in the 1990s compared to the 1980s. After changing their foraging strategy by shifting from mid-depth, low prey environment to near-surface waters, first-feeding larvae encountered much higher rates of prey encounter and almost optimal feeding conditions and had a much higher growth potential. Consequently, larvae were predicted to experience optimal conditions to ensure higher survival throughout the later larval and early juvenile stages. However, this behavioral shift also increased the susceptibility of larvae to unfavorable winddriven surface currents, contributing to the marked increase in interannual variability in recruitment observed during the past decade

    A diode laser stabilization scheme for 40Ca+ single ion spectroscopy

    Full text link
    We present a scheme for stabilizing multiple lasers at wavelengths between 795 and 866 nm to the same atomic reference line. A reference laser at 852 nm is stabilized to the Cs D2 line using a Doppler-free frequency modulation technique. Through transfer cavities, four lasers are stabilized to the relevant atomic transitions in 40Ca+. The rms linewidth of a transfer-locked laser is measured to be 123 kHz with respect to an independent atomic reference, the Rb D1 line. This stability is confirmed by the comparison of an excitation spectrum of a single 40Ca+ ion to an eight-level Bloch equation model. The measured Allan variance of 10^(-22) at 10 s demonstrates a high degree of stability for time scales up to 100 s.Comment: 8 pages, 11 figure

    Integration of entomopathogenic fungi into IPM programs: studies involving weevils (Coleoptera: Curculionoidea) affecting horticultural crops

    Get PDF
    Weevils are significant pests of horticultural crops and are largely managed with insecticides. In response to concerns about negative impacts of synthetic insecticides on humans and the environment, entomopathogenic fungi (EPF) have been developed as an alternative method of control, and as such appear to be “ready-made” components of integrated pest management (IPM) programs. As the success of pest control requires a thorough knowledge of the biology of the pests, this review summarises our current knowledge of weevil biology on nut trees, fruit crops, plant storage roots, and palm trees. In addition, three groups of life cycles are defined based on weevil developmental habitats, and together with information from studies of EPF activity on these groups, we discuss the tactics for integrating EPF into IPM programs. Finally, we highlight the gaps in the research required to optimise the performance of EPF and provide recommendations for the improvement of EPF efficacy for the management of key weevils of horticultural crops

    Deterministic single-photon source from a single ion

    Full text link
    We realize a deterministic single-photon source from one and the same calcium ion interacting with a high-finesse optical cavity. Photons are created in the cavity with efficiency (88 +- 17)%, a tenfold improvement over previous cavity-ion sources. Results of the second-order correlation function are presented, demonstrating a high suppression of two-photon events limited only by background counts. The cavity photon pulse shape is obtained, with good agreement between experiment and simulation. Moreover, theoretical analysis of the temporal evolution of the atomic populations provides relevant information about the dynamics of the process and opens the way to future investigations of a coherent atom-photon interface

    Resonant interaction of a single atom with single photons from a down-conversion source

    Full text link
    We observe the interaction of a single trapped calcium ion with single photons produced by a narrow-band, resonant down-conversion source [A. Haase et al., Opt. Lett. 34, 55 (2009)], employing a quantum jump scheme. Using the temperature dependence of the down-conversion spectrum and the tunability of the narrow source, absorption of the down-conversion photons is quantitatively characterized.Comment: 4 pages, 3 figure

    Heralded single photon absorption by a single atom

    Full text link
    The emission and absorption of single photons by single atomic particles is a fundamental limit of matter-light interaction, manifesting its quantum mechanical nature. At the same time, as a controlled process it is a key enabling tool for quantum technologies, such as quantum optical information technology [1, 2] and quantum metrology [3, 4, 5, 6]. Controlling both emission and absorption will allow implementing quantum networking scenarios [1, 7, 8, 9], where photonic communication of quantum information is interfaced with its local processing in atoms. In studies of single-photon emission, recent progress includes control of the shape, bandwidth, frequency, and polarization of single-photon sources [10, 11, 12, 13, 14, 15, 16, 17], and the demonstration of atom-photon entanglement [18, 19, 20]. Controlled absorption of a single photon by a single atom is much less investigated; proposals exist but only very preliminary steps have been taken experimentally such as detecting the attenuation and phase shift of a weak laser beam by a single atom [21, 22], and designing an optical system that covers a large fraction of the full solid angle [23, 24, 25]. Here we report the interaction of single heralded photons with a single trapped atom. We find strong correlations of the detection of a heralding photon with a change in the quantum state of the atom marking absorption of the quantum-correlated heralded photon. In coupling a single absorber with a quantum light source, our experiment demonstrates previously unexplored matter-light interaction, while opening up new avenues towards photon-atom entanglement conversion in quantum technology.Comment: 10 pages, 4 figure
    corecore