1,296 research outputs found

    Detection of fixed points in spatiotemporal signals by clustering method

    Full text link
    We present a method to determine fixed points in spatiotemporal signals. A 144-dimensioanl simulated signal, similar to a Kueppers-Lortz instability, is analyzed and its fixed points are reconstructed.Comment: 3 pages, 3 figure

    Liquid propellant rocket engine combustion simulation with a time-accurate CFD method

    Get PDF
    Time-accurate computational fluid dynamics (CFD) algorithms are among the basic requirements as an engineering or research tool for realistic simulations of transient combustion phenomena, such as combustion instability, transient start-up, etc., inside the rocket engine combustion chamber. A time-accurate pressure based method is employed in the FDNS code for combustion model development. This is in connection with other program development activities such as spray combustion model development and efficient finite-rate chemistry solution method implementation. In the present study, a second-order time-accurate time-marching scheme is employed. For better spatial resolutions near discontinuities (e.g., shocks, contact discontinuities), a 3rd-order accurate TVD scheme for modeling the convection terms is implemented in the FDNS code. Necessary modification to the predictor/multi-corrector solution algorithm in order to maintain time-accurate wave propagation is also investigated. Benchmark 1-D and multidimensional test cases, which include the classical shock tube wave propagation problems, resonant pipe test case, unsteady flow development of a blast tube test case, and H2/O2 rocket engine chamber combustion start-up transient simulation, etc., are investigated to validate and demonstrate the accuracy and robustness of the present numerical scheme and solution algorithm

    BMQ

    Full text link
    BMQ: Boston Medical Quarterly was published from 1950-1966 by the Boston University School of Medicine and the Massachusetts Memorial Hospitals

    Solidification behavior of intensively sheared hypoeutectic Al-Si alloy liquid

    Get PDF
    The official published version of this article can be found at the link below.The effect of the processing temperature on the microstructural and mechanical properties of Al-Si (hypoeutectic) alloy solidified from intensively sheared liquid metal has been investigated systematically. Intensive shearing gives a significant refinement in grain size and intermetallic particle size. It also is observed that the morphology of intermetallics, defect bands, and microscopic defects in high-pressure die cast components are affected by intensive shearing the liquid metal. We attempt to discuss the possible mechanism for these effects.Funded by the EPSRC

    Statistical Meta-Analysis of Risk Factors for Endometrial Can cer and Development of a Risk Prediction Model Using an Artificial Neural Network Algorithm

    Get PDF
    Objectives: In this study we wished to determine the rank order of risk factors for endometrial cancer and calculate a pooled risk and percentage risk for each factor using a statistical meta-analysis approach. The next step was to design a neural network computer model to predict the overall increase or decreased risk of cancer for individual patients. This would help to determine whether this prediction could be used as a tool to decide if a patient should be considered for testing and to predict diagnosis, as well as to suggest prevention measures to patients. Design: A meta-analysis of existing data was carried out to calculate relative risk, followed by design and implementation of a risk prediction computational model based on a neural network algorithm. Setting: Meta-analysis data were collated from various settings from around the world. Primary data to test the model were collected from a hospital clinic setting. Participants: Data from 40 patients notes currently suspected of having endometrial cancer and undergoing investigations and treatment were collected to test the software with their cancer diagnosis not revealed to the software developers. Main outcome measures: The forest plots allowed an overall relative risk and percentage risk to be calculated from all the risk data gathered from the studies. A neural network computational model to determine percentage risk for individual patients was developed, implemented, and evaluated. Results: The results show that the greatest percentage increased risk was due to BMI being above 25, with the risk increasing as BMI increases. A BMI of 25 or over gave an increased risk of 2.01%, a BMI of 30 or over gave an increase of 5.24%, and a BMI of 40 or over led to an increase of 6.9%. PCOS was the second highest increased risk at 4.2%. Diabetes, which is incidentally also linked to an increased BMI, gave a significant increased risk along with null parity and noncontinuous HRT of 1.54%, 1.2%, and 0.56% respectively. Decreased risk due to contraception was greatest with IUD (intrauterine device) and IUPD (intrauterine progesterone device) at −1.34% compared to −0.9% with oral. Continuous HRT at −0.75% and parity at −0.9% also decreased the risk. Using open-source patient data to test our computational model to determine risk, our results showed that the model is 98.6% accurate with an algorithm sensitivity 75% on average. Conclusions: In this study, we successfully determined the rank order of risk factors for endometrial cancer and calculated a pooled risk and risk percentage for each factor using a statistical meta-analysis approach. Then, using a computer neural network model system, we were able to model the overall increase or decreased risk of cancer and predict the cancer diagnosis for particular patients to an accuracy of over 98%. The neural network model developed in this study was shown to be a potentially useful tool in determining the percentage risk and predicting the possibility of a given patient developing endometrial cancer. As such, it could be a useful tool for clinicians to use in conjunction with other biomarkers in determining which patients warrant further preventative interventions to avert progressing to endometrial cancer. This result would allow for a reduction in the number of unnecessary invasive tests on patients. The model may also be used to suggest interventions to decrease the risk for a particular patient. The sensitivity of the model limits it at this stage due to the small percentage of positive cases in the datasets; however, since this model utilizes a neural network machine learning algorithm, it can be further improved by providing the system with more and larger datasets to allow further refinement of the neural network

    Change in N-terminal pro-B-type natriuretic peptide at 1 year predicts mortality in wild-type transthyretin amyloid cardiomyopathy

    Get PDF
    OBJECTIVES: Wild-type transthyretin amyloid cardiomyopathy (wtATTR-CM) is a progressive and fatal condition. Although prognosis can be determined at the time of diagnosis according to National Amyloidosis Centre (NAC) transthyretin amyloidosis (ATTR) stage, the clinical course varies substantially between individuals. There are currently no established measures of rate of disease progression. Through systematic analysis of functional, biochemical and echocardiographic disease-related variables we aimed to identify prognostic markers of disease progression in wtATTR-CM. METHODS: This is a retrospective observational study of 432 patients with wtATTR-CM diagnosed at the UK NAC, none of whom received disease-modifying therapy. The association between mortality from the 12-month timepoint and change from diagnosis to 12 months in a variety of disease-related variables was explored using Cox regression. RESULTS: Change in N-terminal pro-B-type natriuretic peptide concentration (∆ NT-proBNP) at 12 months from diagnosis was the strongest predictor of ongoing mortality and was independent of both change in other disease-related variables (HR 1.04 per 500 ng/L increase (95% CI 1.01 to 1.07); p=0.003) and a range of known prognostic variables at the time of diagnosis (HR 1.07 per 500 ng/L increase (95% CI 1.02 to 1.13); p=0.007). An increase in NT-proBNP of >500 ng/L, >1000 ng/L and >2000 ng/L during the first year of follow-up occurred in 45%, 35% and 16% of patients, respectively. CONCLUSION: Change in NT-proBNP concentration during the first year of follow-up is a powerful independent predictor of mortality in wtATTR-CM

    Experimental and numerical study of micropitting initiation in real rough surfaces in a micro-elastohydrodynamic lubrication regime

    Get PDF
    Micropitting is a form of surface fatigue damage that happens at the surface roughness scale in lubricated contacts in commonly used machine elements, such as gears and bearings. It occurs where the specific film thickness (ratio of smooth surface film thickness to composite surface roughness) is sufficiently low for the contacts to operate in the mixed lubrication regime, where the load is in part carried by direct asperity contacts. Micropitting is currently seen as a greater issue for gear designers than is regular pitting fatigue failure as the latter can be avoided by control of steel cleanliness. This paper describes the results of both theoretical and experimental studies of the onset of micropitting in test disks operated in the mixed lubrication regime. A series of twin disk mixed-lubrication experiments were performed in order to examine the evolution of micropitting damage during repeated cyclic loading of surface roughness asperities as they pass through the contact. Representative measurements of the surfaces used in the experimental work were then evaluated using a numerical model which combines a transient line contact micro-elastohydrodynamic lubrication (micro-EHL) simulation with a calculation of elastic sub-surface stresses. This model generated time-history of stresses within a block of material as it passes through the contact, based on the instantaneous surface contact pressure and traction at each point in the computing mesh at each timestep. This stress time-history was then used within a shear-strain-based fatigue model to calculate the cumulative damage experienced by the surface due to the loading sequence experienced during the experiments. The proposed micro-EHL model results and the experimental study were shown to agree well in terms of predicting the number of loading cycles that are required for the initial micropitting to occur
    • …
    corecore