2,757 research outputs found

    Geology of the Northern End of San Pedro Mountain, Rio Arriba and Sandoval Counties, New Mexico

    Get PDF
    The structural complexity of this area provided the initial stimulus for this study. With encouragement from Dr. Vincent C. Kelley, the study of this area was undertaken as a master\u27s thesis project. The field work necessary to the project was begun in February, 1957 and completed during the summer of 1957. Mapping was accomplished with the aid of aerial photographs scaled two inches equals one mile. Data were transferred from photographs to a U.S. Soil Conservation Service planimetric map. Strati graphic sections were measured with Brunton compass and a 50-foot steel tape

    Functional design for operational earth resources ground data processing

    Get PDF
    The author has identified the following significant results. Study emphasis was on developing a unified concept for the required ground system, capable of handling data from all viable acquisition platforms and sensor groupings envisaged as supporting operational earth survey programs. The platforms considered include both manned and unmanned spacecraft in near earth orbit, and continued use of low and high altitude aircraft. The sensor systems include both imaging and nonimaging devices, operated both passively and actively, from the ultraviolet to the microwave regions of the electromagnetic spectrum

    Marketing Appalachian apples

    Get PDF

    User Manual for MOLSCAT, BOUND and FIELD, Version 2020.0: programs for quantum scattering properties and bound states of interacting pairs of atoms and molecules

    Full text link
    MOLSCAT is a general-purpose package for performing non-reactive quantum scattering calculations for atomic and molecular collisions using coupled-channel methods. Simple atom-molecule and molecule-molecule collision types are coded internally and additional ones may be handled with plug-in routines. Plug-in routines may include external magnetic, electric or photon fields (and combinations of them). Simple interaction potentials are coded internally and more complicated ones may be handled with plug-in routines. BOUND is a general-purpose package for performing calculations of bound-state energies in weakly bound atomic and molecular systems using coupled-channel methods. It solves the same sets of coupled equations as \MOLSCAT, and can use the same plug-in routines if desired, but with different boundary conditions. FIELD is a development of BOUND that locates external fields at which a bound state exists with a specified energy. One important use is to locate the positions of magnetically tunable Feshbach resonance positions in ultracold collisions. Versions of these programs before version 2019.0 were released separately. However, there is a significant degree of overlap between their internal structures and usage specifications. This manual therefore describes all three, with careful identification of parts that are specific to one or two of the programs.Comment: 206 pages. Program source code available from https://github.com/molscat/molscat This is the full program documentation for the programs described in the journal papers Comp. Phys. Commun. 241, 1-8 (2019) (arXiv:1811.09111) and Comp. Phys. Commun. 241, 9-16 (2019) (arXiv:1811.09584). There is significant text overlap between some parts of the documentation and the (much shorter) journal paper

    Making molecules by mergoassociation: two atoms in adjacent nonspherical optical traps

    Full text link
    Mergoassociation of two ultracold atoms to form a weakly bound molecule can occur when two optical traps that each contain a single atom are merged. Molecule formation occurs at an avoided crossing between a molecular state and the lowest motional state of the atom pair. We develop the theory of mergoassociation for pairs of nonidentical nonspherical traps. We develop a coupled-channel approach for the relative motion of the two atoms and present results for pairs of cylindrically symmetrical traps as a function of their anisotropy. We focus on the strength of the avoided crossing responsible for mergoassociation. We also develop an approximate method that gives insight into the dependence of the crossing strength on aspect ratio

    Making molecules by mergoassociation: Two atoms in adjacent nonspherical optical traps

    Get PDF
    Mergoassociation of two ultracold atoms to form a weakly bound molecule can occur when two optical traps that each contain a single atom are merged. Molecule formation occurs at an avoided crossing between a molecular state and the lowest motional state of the atom pair. We develop the theory of mergoassociation for pairs of nonidentical nonspherical traps. We develop a coupled-channel approach for the relative motion of the two atoms and present results for pairs of cylindrically symmetrical traps as a function of their anisotropy. We focus on the strength of the avoided crossing responsible for mergoassociation. We also develop an approximate method that gives insight into the dependence of the crossing strength on aspect ratio

    New advancements and developments in treatment of renal cell carcinoma: focus on pazopanib

    Get PDF
    With the recent approval of pazopanib, an oral multitargeted tyrosine kinase inhibitor which potently targets vascular endothelial growth factor receptors 1–3, platelet-derived growth factor, and c-kit, six agents are now available for use in the management of metastatic renal cell carcinoma (RCC). Pazopanib has shown improved progression-free survival compared with placebo in treatment-naïve or cytokine-treated patients with metastatic RCC in large Phase II and Phase III clinical trials. Pazopanib has demonstrated a tolerable side effect profile and is currently being compared with sunitinib in a Phase III noninferiority trial. In this review, the outcomes of the clinical testing of pazopanib are discussed, as well as a perspective on the placement of pazopanib among other approved agents

    Tunable Feshbach resonances in collisions of ultracold molecules in 2Σ^2\Sigma states with alkali-metal atoms

    Full text link
    We consider the magnetically tunable Feshbach resonances that may exist in ultracold mixtures of molecules in 2Σ^2\Sigma states and alkali-metal atoms. We focus on Rb+CaF as a prototype system. There are likely to be Feshbach resonances analogous to those between pairs of alkali-metal atoms. We investigate the patterns of near-threshold states and the resonances that they cause, using coupled-channel calculations of the bound states and low-energy scattering on model interaction potentials. We explore the dependence of the properties on as-yet-unknown potential parameters. There is a high probability that resonances will exist at magnetic fields below 1000 G, and that these will be broad enough to control collisions and form triatomic molecules by magnetoassociation. We consider the effect of CaF rotation and potential anisotropy, and conclude that they may produce additional resonances but should not affect the existence of rotation-free resonances
    • …
    corecore