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Making molecules by mergoassociation: Two atoms in adjacent nonspherical optical traps
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Mergoassociation of two ultracold atoms to form a weakly bound molecule can occur when two optical
traps that each contain a single atom are merged. Molecule formation occurs at an avoided crossing between
a molecular state and the lowest motional state of the atom pair. We develop the theory of mergoassociation for
pairs of nonidentical nonspherical traps. We develop a coupled-channel approach for the relative motion of the
two atoms and present results for pairs of cylindrically symmetrical traps as a function of their anisotropy. We
focus on the strength of the avoided crossing responsible for mergoassociation. We also develop an approximate
method that gives insight into the dependence of the crossing strength on aspect ratio.
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I. INTRODUCTION

Ultracold molecules have recently been formed in optical
tweezers by mergoassociation [1]. The process begins with
two atoms in separate tweezer traps, which are then merged.
The atom pair is converted into a molecule by the merging
process, with no further action required.

The energy levels involved in mergoassociation are shown
schematically in Fig. 1. As a function of trap separation, there
is an avoided crossing between the lowest motional state of
the atom pair and a weakly bound molecular state. If the
merging is carried out slowly enough to follow the crossing
adiabatically, the atom pair is converted into a weakly bound
molecule. A major advantage of this approach is that it can
work even for unstructured atoms, and does not require a
magnetically tunable Feshbach resonance. It thus opens the
way to creating ultracold molecules from atom pairs without
Feshbach resonances at experimentally accessible magnetic
fields. It also offers possibilities for constructing two-qubit
gates for quantum logic operations [2].

Avoided crossings between atomic and molecular states
as a function of trap separation were first studied by Stock
et al. [3,4], who considered the case of two atoms initially
in identical spherical traps. Other authors have investigated
similar situations for ions and molecules in spherical or quasi-
1D traps [5,6]. However, optical tweezers for ultracold atoms
are usually formed in the high-intensity region at the waist
of a focused laser beam [7]. Such tweezers are strongly
anisotropic, usually with much weaker confinement along the
laser beam than perpendicular to it. In Ref. [1], the ratio of the
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corresponding harmonic frequencies was about 1:6. Never-
theless, simulating the experiment with the tweezers approxi-
mated as spherical gave surprisingly good agreement between
experiment and theory.

In the present paper, we develop the theory of merging
nonidentical nonspherical traps. In Sec. II we derive the sep-
aration between the relative and center-of-mass motions for
separated traps, including the coupling term between them.
In Sec. III, we develop a numerically exact coupled-channel
approach to handle the relative motion of two atoms in
nonspherical traps, including the case of traps that are not
coaligned. In Sec. IV, we solve the coupled equations and
present energy-level diagrams for the merging of two cylindri-
cally symmetrical tweezers as a function of their aspect ratios.
We focus on the strength of the lowest avoided crossing,
which is the key quantity for mergoassociation, and show
that it depends strongly on aspect ratio. The results never-
theless explain the success of the spherical approximation
in Ref. [1]. In Sec. V we develop an approximate method
based on a basis-set approach, which qualitatively reproduces
the coupled-channel results and gives insight into the depen-
dence of avoided-crossing strength on aspect ratio. Finally, in
Sec. VI we present conclusions and perspectives for future
work.

II. SEPARATION OF RELATIVE
AND CENTER-OF-MASS MOTION

We consider two atoms independently confined in adjacent
optical traps. Atom i has mass mi and position Ri and is
confined in a trap centered at R0

i . The motion may be fac-
torized approximately into terms involving the relative and
center-of-mass coordinates of the pair, R and R, respectively.
The two-atom kinetic energy operator is exactly separable,

− h̄2

2m1
∇2

1 − h̄2

2m2
∇2

2 = − h̄2

2M∇2
R − h̄2

2μ
∇2

R, (1)
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FIG. 1. Schematic representation of the energy levels involved in
mergoassociation, as a function of trap separation z0. The molecular
level (approximately quadratic as a function of z0) has avoided cross-
ings with motional states of the atom pair (approximately horizontal
at large z0). Mergoassociation occurs when an atom pair in the lowest
motional state is transferred into the molecular state by adiabatic
passage over the lowest avoided crossing.

where

R = (m1R1 + m2R2)/M, (2)

R = R2 − R1, (3)

M = m1 + m2, (4)

μ = m1m2/M. (5)

A. Spherical traps

If each trap is harmonic and spherical, the total potential
energy due to the traps is

V trap = 1
2 m1ω

2
1

∣∣R1 − R0
1

∣∣2 + 1
2 m2ω

2
2

∣∣R2 − R0
2

∣∣2
, (6)

where ωi is the harmonic frequency for atom i. This may be
written

1
2μω2

rel|R − R0|2 + 1
2Mω2

com|R − R0|2

+ μ�ω2(R − R0) · (R − R0), (7)

where

R0 = R0
2 − R0

1, (8)

ω2
rel = (

m2ω
2
1 + m1ω

2
2

)/
M, (9)

R0 = (
m1R0

1 + m2R0
2

)
/M, (10)

ω2
com = (

m1ω
2
1 + m2ω

2
2

)
/M, (11)

�ω2 = ω2
2 − ω2

1. (12)

This is a generalization of the result of Stock et al. [3],
who dealt with the case m1 = m2 and ω1 = ω2 so that the
coupling term vanished. The separation is similar to that for
two nonidentical atoms in a single trap [8], except that the
coupling term here involves (R − R0) · (R − R0) instead of
R · R. The relative and center-of-mass motions are uncoupled
if the trap frequencies for the two atoms are the same. The
coupling is generally not important if both atoms are in the
motional ground state, but can be significant when trap states
that are excited in the relative and center-of-mass motions are
nearly degenerate.

B. Nonspherical traps

If the individual traps are harmonic but nonspherical, each
trap has three principal axes perpendicular to one another.
Equation (7) generalizes to

V trap = 1
2μ[R − R0]T ω2

rel[R − R0]

+ 1
2M[R − R0]T ω2

com[R − R0]

+ μ[R − R0]T �ω2[R − R0], (13)

where ω2
rel, ω

2
com and �ω2 are second-rank tensors. We choose

Cartesian axes X,Y, Z along the principal axes of ω2
rel, so that

it may be represented as a diagonal matrix,

ω2
rel =

⎛
⎜⎜⎝

ω2
rel,x 0 0

0 ω2
rel,y 0

0 0 ω2
rel,z

⎞
⎟⎟⎠. (14)

If the two traps are coaligned, meaning that they share the
same set of principal axes, ω2

com and �ω2 are also diagonal
matrices, defined similarly; if not, they are nondiagonal sym-
metric matrices. R, R0, R, and R0 are column vectors

R =

⎛
⎜⎜⎝

x

y

z

⎞
⎟⎟⎠ = R

⎛
⎜⎜⎝

sin θ cos φ

sin θ sin φ

cos θ

⎞
⎟⎟⎠, (15)

and similarly for R0, R, and R0. If the traps are anharmonic,
the potentials for motion in R and R are also anharmonic.
The coupling term is then more complicated, but is still zero
if either R = R0 or R = R0. In the remainder of this paper,
we neglect the coupling term and focus on the relative motion.
This is a good approximation for the lowest trap state that is
of principal interest for mergoassociation.

III. COUPLED-CHANNEL FORMULATION
FOR RELATIVE MOTION

A. The trap potential

Even if the two traps are not coaligned, the potential for
relative motion is harmonic. It has three principal axes perpen-
dicular to one another, which are used to define Cartesian axes
X,Y, Z as above. The resulting coordinate system is shown in
Fig. 2(a). The potential for relative motion may be written

V trap
rel (R) = 1

2μ[R − R0]T ω2
rel[R − R0], (16)

with a minimum at the trap separation R = R0. A cut through
this is shown in green in Fig. 2(b).
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(a)

(b)

FIG. 2. (a) Coordinate system for relative motion. The ellipsoid
is a schematic representation of the shape of the trap potential for
relative motion, and the Cartesian axes are aligned along its principal
axes. (b) A cut through the potential for relative motion for y = 0,
showing the contours of the harmonic trap centered at R0 (green) and
a shorter-range atom-atom potential centered at the origin (blue).

For calculations in spherical polar coordinates, it is conve-
nient to expand the potential for relative motion as

V trap
rel (R) =

∑
λκ

Vλκ (R)Cλκ (θ, φ), (17)

where Cλκ (θ, φ) = [4π/(2λ + 1)]1/2Yλκ (θ, φ) are Racah-
normalized spherical harmonics. For the potential (16), the

only nonzero terms in the expansion are

V00(R) = 1

2
μω̄2

relR
2 + 1

2
μRT

0 ω2
relR0, (18)

V10(R) = −μω2
rel,zz0R, (19)

V1±1(R) = ∓ 1√
2
μ

(
ω2

rel,xx0 − iω2
rel,yy0

)
R, (20)

V20(R) = 1

6
μ

(
2ω2

rel,z − ω2
rel,x − ω2

rel,y

)
R2, (21)

V2±2(R) = 1

2
√

6
μ

(
ω2

rel,x − ω2
rel,y

)
R2, (22)

where

ω̄2
rel = 1

3

(
ω2

rel,x + ω2
rel,y + ω2

rel,z

)
. (23)

The constant term in V00(R) involving RT
0 ω2

relR0 is chosen to
place the minimum of the combined trap at zero energy. It is
often convenient to express the trap potential in terms of har-
monic lengths for relative motion, βrel,α = [h̄/(μωrel,α )]1/2.

There are two special cases of the expansion that are of
particular interest. If the traps are cylindrically symmetrical
around the intertrap vector R0, z may be chosen to lie along
R0. Terms with κ �= 0 are then zero and the expansion may be
replaced by a simpler one in terms of Legendre polynomials
Pλ(cos θ ),

V trap
rel (R) =

∑
λ

Vλ0(R)Pλ(cos θ ). (24)

If the individual traps are spherical, the term V20(R) is also
zero. This is the case handled by Stock et al. [3] and Ruttley
et al. [1].

The expansion (17) remains valid for anharmonic poten-
tials, but in this case the expansion does not terminate and the
coefficients Vλκ (R) must usually be evaluated by numerical
quadrature.

B. The interaction potential

The interaction potential Vint(R) between the two atoms
may be represented at various levels of complexity. For
unstructured atoms, it is isotropic, Vint(R). When all the
harmonic lengths βrel,α are large compared to the range of the
potential, it may be sufficient to represent Vint(R) as a point
contact potential [9],

Vint(R) = 2π h̄2a(E )

μ
δ(R)

∂

∂R
R, (25)

where the scattering length a(E ) may depend on energy if
required. Such a contact potential may be implemented in
coupled-channel calculations as a boundary condition on the
log derivative of the s-wave component of the wave function,

dψ00

dR
[ψ00(R)]−1 = −1/a(E ) (26)

at R = 0. A contact potential affects only states with nonzero
density at R = 0, which here occurs only for states with a
component in M = 0.

More complicated treatments might include atoms or
molecules with additional coordinates ξ for internal structure,
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such as alkali-metal atoms including electron and nuclear spin
and Zeeman effects. The interaction potential then depends on
ξ as well as R, and Vint(R, ξ ) may itself be anisotropic. The
total wave function would then be expanded in a basis set that
includes functions for ξ , as for calculations on untrapped atom
pairs [10].

C. Coupled-channel equations

The Schrödinger equation for relative motion is[
h̄2

2μ

(
−R−1 d2

dR2
R + L̂2

R2

)
+ V (R) − E

]
�(R, θ, φ) = 0,

(27)

where L̂2 is the angular momentum operator for relative mo-
tion of the atoms and E is the total energy. The total potential
energy is V (R) = V trap

rel (R) + Vint(R). To solve Eq. (27), we
expand the wave function as

�(R, θ, φ) = R−1
∑
LM

ψLM (R)YLM (θ, φ), (28)

where YLM (θ, φ) are spherical harmonics normalized to unity.
Substituting the expansion (28) into Eq. (27) gives a set of
coupled equations for the channel functions ψLM (R),

d2ψLM

dR2
=

∑
L′M ′

[WLM,L′M ′ (R) − EδLL′δMM ′ ]ψL′M ′ (R), (29)

where δi j is the Kronecker delta, E = 2μE/h̄2, and

WLM,L′M ′ (R) = L(L + 1)

R2
δLL′δMM ′ + 2μ

h̄2

∫ 2π

0

∫ π

0
Y ∗

LM (θ, φ)

× V (R, θ, φ)YL′M ′ (θ, φ) sin θ dθ dφ. (30)

The contribution of V trap
rel (R) to WLM,L′M ′ (R) is

2μ

h̄2

∑
λκ

Vλκ (R)(−1)M[(2L + 1)(2L′ + 1)]1/2

×
(

L λ L′

−M κ M ′

)(
L λ L′

0 0 0

)
. (31)

If R0 lies along one of the principal axes of the traps,
chosen as Z , the potential (17) is symmetric with respect to
a proper rotation C2(Z ), so the quantity (−1)M is conserved
and separate calculations may be performed for even and odd
M. In addition, basis functions for M �= 0 are symmetrized,

�LM (θ, φ) = 1√
2

[YLM (θ, φ) ± (−1)MYL−M (θ, φ)], (32)

and separate calculations are carried out for + and − symme-
try. Only the functions of + symmetry for M �= 0 are coupled
to those for M = 0. Parity is not conserved, so functions for
both even and odd L must be included. If in addition V trap

rel (R)
is cylindrically symmetrical about the z axis, the sum over κ

is limited to κ = 0. The coupled equations are then diagonal
in M.

D. Solution of coupled equations

We solve the coupled equations to find bound states using
the package BOUND [11,12]. This propagates solutions of the
coupled-channel equations for a trial energy from short range
and from long range to a matching point Rmatch in the clas-
sically allowed intermediate region. It then converges upon
energies at which the wave function and its derivative are
continuous at Rmatch, using the methods described in Ref. [13].
The coupled equations are propagated from R = 0 to Rmatch ≈
R0 using the fixed-step symplectic log-derivative propagator
of Manolopoulos and Gray [14] with a step size of 25 Å, and
from Rmax to Rmatch using the variable-step Airy propagator of
Alexander and Manolopoulos [15]. The outer limit of integra-
tion is chosen as

Rmax =
⎡
⎣ ∑

α=x,y,z

(α0 + ρβrel,α )2

⎤
⎦

1/2

, (33)

where ρ is typically 4.
The present coupled-channel approach differs from the

treatment of Stock et al. [3] in that it does not need basis sets
for the interatomic distance R, which is handled efficiently by
the propagation. The R-dependent coupling matrices in our
formulation are much smaller than the Hamiltonian matrix in
a basis set that includes functions for R.

The size of the spherical-harmonic basis set required de-
pends on R0 and the trap geometry, and is discussed below.

It would be straightforward to apply the coupled-channel
method with a realistic atom-atom potential Vint(R) in place
of the contact potential. This would require a much smaller
step size for the short-range part of the propagation, but the
method would be otherwise unchanged.

IV. COUPLED-CHANNEL RESULTS

In this section we present coupled-channel results for a pair
of cylindrically symmetrical traps that approach one another
along an axis perpendicular to their symmetry axis. This is
close to the configuration that has been used experimentally
to achieve mergoassociation of Rb and Cs atoms to form a
weakly bound RbCs molecule [1]. It differs from the case
considered in Ref. [16], where the traps approach along their
symmetry axis. For consistency with [1], we choose the axis
Z along the direction of approach and X as the symmetry
axis of the traps, with ωrel,y = ωrel,z. The separation of the
traps is thus z0, with x0 = y0 = 0. We represent the atom-atom
interaction with a contact potential of the form (25), with a
scattering length a = 645 a0 [17] appropriate for RbCs [18].
Since a contact potential affects only states with a component
of M = 0, we carry out calculations only for even M and +
symmetry.

We define aspect ratios Ax = βrel,x/βrel,z =
(ωrel,z/ωrel,x )1/2 and Ay = βrel,y/βrel,z = (ωrel,z/ωrel,y)1/2.
For the coupled-channel calculations in this section, with
cylindrically symmetrical traps, Ay = 1.

The size of the basis set required depends on the trap
geometry and also increases with R0. For the majority of
the calculations described here, including functions up to
Lmax = 24 gives convergence of the energies to six significant
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FIG. 3. Energies of two atoms in separate tweezers as a function of trap separation, obtained from coupled-channel calculations. Each
panel is for a different aspect ratio Ax , for βrel,z = βrel,y ≈ 677 a0, corresponding to ωrel,z = ωrel,y = 150 kHz. The gray dotted lines correspond
to the spherical case with Ax = Ay = 1.

figures for the largest R0 considered here. Calculations for
Ax 	 1 required Lmax = 40.

Figure 3 shows the energy levels for relative motion of two
atoms in adjacent traps, as a function of trap separation, for
various values of the aspect ratio Ax. In all cases, ωrel,z =
150 kHz. The dotted lines show the corresponding levels for a
pair of spherical traps. At large separation, the energy levels
of the trap states are those of a three-dimensional harmonic
oscillator in the relative motion. These are

Enxnynz = h̄
[(

nx + 1
2

)
ωrel,x + (

ny + 1
2

)
ωrel,y

+ (
nz + 1

2

)
ωrel,z

]
. (34)

The energies shown are those for states that feel the influence
of the contact potential, which are those with nonzero density
at R = 0; for the trap states, this corresponds to limiting nx

and ny to even values. The quantum numbers are shown for
Ax = 2.6 in Fig. 3; this corresponds to ωrel,z = 6.76 ωrel,x, so
trap levels with (nx, ny, nz ) = (2, 0, 0), (4,0,0), and (6,0,0) all
lie below (0,0,1) at large z0. For small separation (z0 � βrel,z),
the trap states have substantial amplitude at R = 0, so they
are significantly shifted by Vint(R). In the limit z0 = 0, they
correspond to the levels for two atoms in a cylindrically sym-
metrical trap [19,20].

Cutting through the trap states is a molecular level that is
shifted quadratically by the trap potential at R = 0, which
here is 1

2μω2
rel,zz

2
0. There is an additional shift due to the

curvature of the trap potential, as described in Sec. V below;
this exists even at z0 = 0. There are avoided crossings wher-
ever the shifted molecular level would cross one of the trap
levels. It is the lowest of these avoided crossings that allows
mergoassociation to form a weakly bound molecule from a
pair of atoms; this occurs when traps containing atoms in their
relative motional ground state are merged slowly enough to
traverse the avoided crossing adiabatically.

The lowest crossing occurs at z0 = zX
0 , where the shifted

molecular level has the same energy as the lowest level of

the trap. When the atom-atom interaction is represented as a
contact potential, this is approximately

zX
0 ≈ βrel,z

(
1 + A−2

x + A−2
y + A−2

a

)1/2
, (35)

where Aa = a/βrel,z. We locate this crossing numerically us-
ing the state energies from coupled-channel calculations and
then determine its precise position and effective coupling ma-
trix element �eff by a local fit of the energies near z0 = zX

0 to
the eigenvalues of a 2 × 2 matrix(

EX + dmol
(
z0 − zX

0

)
�eff

�eff EX + dat
(
z0 − zX

0

)
)

, (36)

where EX is the central energy of the avoided crossing and
dat and dmol are the gradients of the atom pair and molecular
states near zX

0 . To a first approximation, dat = 0 and

dmol = μω2
rel,zz

X
0 = h̄2zX

0

μβ4
rel,z

. (37)

This procedure accurately determines the point of closest ap-
proach between the two states, and interprets their separation
at that point as 2�eff; however, it neglects effects due to other
nearby states, so the resulting value of �eff can be an underes-
timate of the true matrix element between the two states when
other avoided crossings overlap the lowest one, as seen for
Ax = 2.6 in Fig. 3.

Figure 4 shows the resulting values of �eff as a function of
aspect ratio Ax for various values βrel,z. The general form of
�eff for any value of βrel,z is that it reaches a maximum at a
value of Ax near 1.3, corresponding to ωrel,z/ωrel,x ≈ 2. There
is a sharp dropoff in �eff at smaller values of Ax, and �eff → 0
as Ax → 0. There is a much gentler dropoff at larger values of
Ax. The origins of this behavior will be discussed in Sec. V.

The semiclassical probability of traversing the avoided
crossing adiabatically and thus forming a molecule may
be calculated by numerical solution of the time-dependent
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FIG. 4. Effective matrix element �eff for the lowest avoided
crossing, from coupled-channel calculations, as a function of aspect
ratio Ax for Ay = 1 and various values of βrel,z.

Schrödinger equation. In a full treatment, this requires a
derivative coupling matrix that may be obtained from the
eigenstates as a function of z0, which are available from the
present calculation. A simple approximation to this is pro-
vided in the two-state case by the Landau-Zener formula,

PLZ = exp

( −2π�2
eff

h̄|(dmol − dat ) dz0/dt |
)

, (38)

where dz0/dt is the speed of relative motion of the traps at
zX

0 . In initial experimental work, Ruttley et al. [1] measured
the probability of mergoassociation over the range 600 a0 �
βrel,z � 1500 a0. They used tweezers with Ax ≈ 2.6, but nev-
ertheless found that the probabilities were well reproduced
using theoretical crossing strengths calculated for spherical
traps (Ax = 1). Figure 4 explains this result: The strength of
the avoided crossing dies off only slowly for Ax > 1.3, and
aspect ratios 1.5 < Ax < 2.6 give crossing strengths qualita-
tively similar to those for Ax = 1.

V. APPROXIMATE MODEL

In this section we develop an approximate model that re-
produces the main features of the coupled-channel results. The
Hamiltonian for relative motion may be written

Ĥrel = T̂rel + V trap
rel (R) + Vint(R)

= Ĥ trap
rel + Vint(R) = Ĥint + V trap

rel (R), (39)

where T̂rel is the kinetic energy operator, Ĥ trap
rel is the Hamil-

tonian for the nonspherical harmonic trap and Ĥint is the
Hamiltonian for the untrapped atom pair. If Vint(R) is
represented as a contact potential as in Eq. (25), and a > 0,
Ĥint has a single molecular bound state with eigenfunction

ψa = (2πa)−1/2R−1 exp(−R/a), (40)

and eigenvalue

Ea = −h̄2/(2μa2). (41)

The eigenfunctions of Ĥ trap
rel are products of harmonic-

oscillator functions in x, y, and z,

ψnxnynz (x, y, z) = ψnx (x − x0)ψny (y − y0)ψnz (z − z0), (42)

where

ψn(α) = (2nn!βrel,α )−1/2π−1/4Hn(α/βrel,α )

× exp
( − 1

2 (α/βrel,α )2
)

(43)

and Hn(q) is a Hermite polynomial. The corresponding eigen-
values are given by Eq. (34).

We consider a nonorthogonal basis set formed by the func-
tions (40) and (42) and construct Hamiltonian and overlap
matrices. The functions are normalized, so the diagonal el-
ements of the overlap matrix S are all 1. The only nonzero
off-diagonal elements are those between the bound-state func-
tion (40) and the harmonic-oscillator functions (42),

Sa,nxnynz = 〈a|nxnynz〉

=
∫ 2π

0

∫ π

0

∫ ∞

0
ψaψnxnynz r

2dr sin θdθ dφ. (44)

These are evaluated by three-dimensional numerical quadra-
ture, using Gauss-Laguerre quadrature for r, Gauss-Legendre
quadrature for θ, and equally spaced and weighted points
for φ.

The diagonal elements of the Hamiltonian matrix for the
harmonic-oscillator functions are

Hnxnynz,nxnynz = Enxnynz + 〈nxnynz|Vint(R)|nxnynz〉, (45)

where for a contact potential

〈nxnynz|Vint(R)|nxnynz〉
= (2π h̄2a/μ)

∣∣ψnx (x0)ψny (y0)ψnz (z0)
∣∣2

. (46)

For the molecular function,

Haa = Ea + 〈a|V trap
rel (R)|a〉, (47)

where

〈a|V trap
rel (R)|a〉 = V trap

rel (R0) + A2
a

12
h̄ωrel,z

(
1 + A−4

x + A−4
y

)
.

(48)

The second term accounts for the curvature of the trap poten-
tial. It is usually relatively small for Aa � 1, but is independent
of R0, and is responsible for the shift of the molecular state at
z0 = 0 seen in Fig. 3, particularly at Ax = 0.6.

The off-diagonal elements of the Hamiltonian between
harmonic-oscillator functions are

Hn′
xn′

yn′
z,nxnynz = (2π h̄2a/μ)ψnx (x0)ψny (y0)ψnz (z0)

× ψn′
x
(x0)ψn′

y
(y0)ψn′

z
(z0), (49)

while those between the harmonic-oscillator functions and the
molecular function are

Ha,nxnynz = Enxnynz Sa,nxnynz

− (h̄2/μ)(2π/a)1/2ψnx (x0)ψny (y0)ψnz (z0). (50)
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FIG. 5. Energies of two atoms in separate tweezers as a function
of trap separation for Ax = 2.1. Black lines show the results of
coupled-channel calculations, while orange and blue dashed lines
show basis-set calculations with nx, ny, nz � 2 and 10, respectively.
Other parameters are as in Fig. 3.

The equations above may be used in two ways. First,
they may be used to produce complete energy-level diagrams
as a function of R0 or other parameters. For this, matri-
ces H and S are evaluated using a substantial number of
harmonic-oscillator basis functions, and then used to solve
a generalized matrix eigenvalue problem HC = SCE to pro-
duce eigenvectors C and a diagonal matrix of eigenvalues
E. We illustrate this with the case investigated in Sec. IV,
with two cylindrically symmetrical traps and the intertrap
vector perpendicular to the symmetry axis of the traps. Fig-
ure 5 shows the levels for Ax = 2.1, using harmonic-oscillator
basis sets with nx, ny, nz � 2 and 10, compared with the re-
sults of coupled-channel calculations. It may be seen that
the basis-set approach gives qualitatively correct results even
for a small basis set. However, it is not fully converged for
small z0 even for a large basis set. This arises because the
true wave functions have cusps at R = 0 due to the con-
tact potential, and these cusps are poorly represented by
an expansion in harmonic functions. They can be handled
in spherical coordinates using parabolic cylinder functions
in place of harmonic-oscillator functions [3], but such func-
tions are inefficient for well-separated traps.

A much simpler application of the basis-set approach is to
the strengths of avoided crossings that predominantly involve
only the molecular state and a single harmonic-oscillator
function. As in Sec. IV, we focus on the crossing between
the molecular state and the lowest harmonic-oscillator state.
Under these circumstances, the off-diagonal matrix element
of the Hamiltonian between the two functions is

Ha,000 = E000Sa,000 + 〈a|Vint(R)|000〉, (51)
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FIG. 6. Effective matrix element for the lowest avoided crossing
as a function of aspect ratio Ax for Ay = 1 and two values of βrel,z;
results shown are �eff from coupled-channel calculations (black),
|〈a|Vint(R)|000〉| from Eq. (53) (dotted), and |�2×2

eff | from Eq. (55)
(dashed).

where

〈a|Vint(R)|000〉 = − h̄2

μ

(
2 exp

[ − 1
2

(
zX

0 /βrel,z
)2]

√
πaβrel,xβrel,yβrel,z

)1/2

. (52)

If zX
0 is taken from Eq. (35), this may be written

−h̄ωrel,z

(
2 exp

[ − 1
2

(
1 + A−2

x + A−2
y + A−2

a

)]
√

πAxAyAa

)1/2

. (53)

If the overlap integral Sa,000 is neglected, Eq. (53) provides
an analytic first approximation to the effective matrix element
�eff, as shown by the dotted lines in Fig. 6. It also shows that
the sharp dropoff in �eff at small values of Ax occurs because
zX

0 increases sharply as Ax decreases, due to the term involving
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A−2
x in Eq. (35). Conversely, the much slower dropoff at large

Ax occurs because of the harmonic-oscillator normalization
factor involving β

−1/2
rel,x in Eq. (52).

Equations (52) and (53) are derived here for a contact
potential. More generally, however, the wave function for a
molecular state with binding energy Eb is asymptotically of
the form R−1 exp(−kR), where k = (2μEb/h̄2)1/2 and k−1

plays the role of an effective scattering length. This is valid
even when Eb is too large to be represented by Eq. (41) with
the true scattering length a. For fixed Ax and Ay, the quantity
�2

eff that appears in the Landau-Zener formula (38) is thus
approximately proportional to

ω2
rel,zẼ

1/2
b exp(−Ẽb), (54)

where Ẽb = Eb/(h̄ωrel,z ). The strength of the avoided cross-
ing decreases sharply for Ẽb � 1, and the binding energies
of the molecules that can be formed by mergoassociation
are likely to be limited by the trap frequencies that can be
achieved.

It may be noted that, for the case Ay = 1 and neglecting
overlap, Eq. (53) predicts that the maximum value of �eff

appears at Ax = √
2 for all values of βrel,z. This agrees re-

markably well with the coupled-channel results in Fig. 4. The
analytic expression shows a maximum for Ax = √

2, quali-
tatively explaining the maximum near Ax = 1.3 found from
coupled-channel calculations.

If the effects of wavefunction overlap are included,
the half-separation between the eigenvalues of the 2 × 2
generalized eigenvalue problem at the point of closest
approach is

�2×2
eff = 〈a|Vint(R)|000〉 − 〈000|Vint(R)|000〉Sa,000

1 − S2
a,000

. (55)

This is nonanalytic because the overlap integral Sa,000 must be
evaluated by numerical quadrature. Nevertheless, the evalua-
tion is straightforward. The values of �2×2

eff from Eq. (55) are
shown by the dashed lines in Fig. 6.

Figure 6 shows that Eq. (53) provides a qualitatively rea-
sonable approximation to �eff at large βrel,z, but that the
approximation breaks down for smaller βrel,z, particularly for
large Ax. Equation (55) improves the agreement when the
overlap is moderate. However, both equations underestimate
�eff for Ax < 1. This is due mainly to approximating zX

0 by
Eq. (35), which neglects the second term in Eq. (48) and thus
overestimates zX

0 . There are also remaining discrepancies at
high Ax, particularly for smaller βrel,z. These arise because,
for z0 � 2βrel,z and Aa � 1, the trap states are strongly shifted
and mixed by Vint(R). For A−2

x + A−2
a � 1, zX

0 from Eq. (35)
is small enough that this mixing is important and the lowest
crossing is not well characterized by Ha,000 and Sa,000 alone.
Under these circumstances it is necessary to use a larger basis
set, rather than the 2 × 2 approximation implicit in Eqs. (52)
and (55).

An important point to note is that, for a contact potential,
the results may be expressed in dimensionless form, with all
lengths (including a) expressed with respect to a single length
scale (βrel,z here) and all energies expressed with respect to
a corresponding energy scale h̄ωrel,z. The results from both
coupled-channel calculations and the basis-set approach are

“universal” for given values of Ax, Ay, and Aa when expressed
in these units. Results for values of a that differ from a =
645 a0 used here may thus be obtained by appropriate scal-
ings of the harmonic lengths and energies, without additional
calculations.

The coupled-channel approach of Sec. III can be applied
for any interaction potential Vint(R). However, the basis-set
approach cannot be applied for interaction potentials that are
nonintegrable near R = 0, as is the case for most realistic
atom-atom potentials. It also cannot be applied for contact
potentials corresponding to a < 0, because the molecular
function (40) then cannot be normalized. Furthermore, it re-
quires very large basis sets of harmonic-oscillator functions
when Aa � 1 and R0 � βrel,z.

VI. CONCLUSIONS

We have developed the theory of pairs of atoms in adja-
cent nonspherical traps. This is important for understanding
mergoassociation [1], in which weakly bound molecules are
formed during the merging of two optical tweezers or cells
of an optical lattice. For harmonic traps, we find that the
separation of relative and center-of-mass motion is similar to
that for two atoms in a single trap [8], but with a different
coupling term between the motions.

We have developed a coupled-channel approach that can
be used for the relative motion of atom pairs in harmonic
traps with arbitrary anisotropy and arbitrary relative orien-
tation. We have solved the coupled equations for pairs of
coaligned nonspherical traps, as a function of trap separation.
We approximate the atom-atom interaction here by a contact
potential, but the method can be readily extended to handle
other interaction potentials. If the molecule formed from the
two atoms has a weakly bound state, it undergoes avoided
crossings, as a function of trap separation, with the states of
the trapped atom pair. Merging two traps that each contain an
atom in its lowest motional state can thus form a molecule by
adiabatic passage across the lowest-energy avoided crossing.
This is mergoassociation.

We focus on the case important for mergoassociation with
optical tweezers, where two traps that are individually cylin-
drical are merged along an axis Z perpendicular to their
symmetry axis X . The confinement along these axes is char-
acterized by harmonic lengths βrel,z and βrel,x, respectively,
with aspect ratio Ax = βrel,x/βrel,z. The strength of the avoided
crossing depends strongly on the aspect ratio: For fixed βrel,z,
it has a maximum near Ax = 1.3. In initial experimental work
on mergoassociation [1], it was found that experiments with
Ax ≈ 2.6 were well reproduced by theory based on spheri-
cal traps (Ax = 1). This is coincidental; Ax = 1 and 2.6 give
similar crossing strengths simply because they lie on opposite
sides of the maximum.

We have developed an approximate model of the energy
levels for separated traps. This uses a nonorthogonal ba-
sis set that combines a single molecular function with a
set of Cartesian harmonic-oscillator functions for the trap
states. The model gives reasonably accurate energy levels near
the avoided crossing that is important for mergoassociation,
though the harmonic-oscillator basis set converges slowly for
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small trap separations. In its simplest form, with only a sin-
gle harmonic-oscillator function, the model gives an analytic
expression for the crossing strength if overlap between the
molecular and harmonic-oscillator functions is neglected. The
analytic expression shows a maximum for Ax = √

2, quali-
tatively explaining the maximum near Ax = 1.3 found from
coupled-channel calculations.

The methods developed in this paper will help understand
and predict the efficiency of mergoassociation, both with op-
tical tweezers and with transport in an optical lattice. This
will allow efficient conversion of atom pairs into molecules
for systems with weakly bound states, even if they do not
possess resonances suitable for magnetoassociation. It may
also be possible to extend mergoassociation to more complex
systems involving molecules or Rydberg atoms. The avoided

crossing characterized here also offers opportunities for
high-fidelity two-qubit quantum logic operations with atom
pairs [2–4].

The data presented in this work are available from Durham
University [21].
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