192 research outputs found
Multiple episodes of star formation in the CN15/16/17 molecular complex
We have started a campaign to identify massive star clusters inside bright
molecular bubbles towards the Galactic Center. The CN15/16/17 molecular complex
is the first example of our study. The region is characterized by the presence
of two young clusters, DB10 and DB11, visible in the NIR, an ultra-compact HII
region identified in the radio, several young stellar objects visible in the
MIR, a bright diffuse nebulosity at 8\mu m coming from PAHs and sub-mm
continuum emission revealing the presence of cold dust. Given its position on
the sky (l=0.58, b=-0.85) and its kinematic distance of ~7.5 kpc, the region
was thought to be a very massive site of star formation in proximity of the
CMZ. The cluster DB11 was estimated to be as massive as 10^4 M_sun. However the
region's properties were known only through photometry and its kinematic
distance was very uncertain given its location at the tangential point. We
aimed at better characterizing the region and assess whether it could be a site
of massive star formation located close to the Galactic Center. We have
obtained NTT/SofI JHKs photometry and long slit K band spectroscopy of the
brightest members. We have additionally collected data in the radio, sub-mm and
mid infrared, resulting in a quite different picture of the region. We have
confirmed the presence of massive early B type stars and have derived a
spectro-photometric distance of ~1.2 kpc, much smaller than the kinematic
distance. Adopting this distance we obtain clusters masses of M(DB10) ~ 170
M_sun and M(DB11) ~ 275 M_sun. This is consistent with the absence of any O
star, confirmed by the excitation/ionization status of the nebula. No HeI
diffuse emission is detected in our spectroscopic observations at 2.113\mu m,
which would be expected if the region was hosting more massive stars. Radio
continuum measurements are also consistent with the region hosting at most
early B stars.Comment: Accepted for publication in Astronomy and Astrophysics. Fig. 1 and 3
presented in reduced resolutio
Improved Ribosome-Footprint and mRNA Measurements Provide Insights into Dynamics and Regulation of Yeast Translation
Ribosome-footprint profiling provides genome-wide snapshots of translation, but technical challenges can confound its analysis. Here, we use improved methods to obtain ribosome-footprint profiles and mRNA abundances that more faithfully reflect gene expression in Saccharomyces cerevisiae. Our results support proposals that both the beginning of coding regions and codons matching rare tRNAs are more slowly translated. They also indicate that emergent polypeptides with as few as three basic residues within a ten-residue window tend to slow translation. With the improved mRNA measurements, the variation attributable to translational control in exponentially growing yeast was less than previously reported, and most of this variation could be predicted with a simple model that considered mRNA abundance, upstream open reading frames, cap-proximal structure and nucleotide composition, and lengths of the coding and 50 UTRs. Collectively, our results provide a framework for executing and interpreting ribosome-profiling studies and reveal key features of translational control in yeast.UCSF Program for Breakthrough Biomedical Research - Sandler FoundationNIH DP5OD017895, GM061835Burroughs Wellcome FundDavid and LucilePackard FoundationUS Department of the Interior Grant D12AP00025US Army Research Office W911NF-12-1-0552Cellular and Molecular Biolog
Tidal friction in close-in satellites and exoplanets. The Darwin theory re-visited
This report is a review of Darwin's classical theory of bodily tides in which
we present the analytical expressions for the orbital and rotational evolution
of the bodies and for the energy dissipation rates due to their tidal
interaction. General formulas are given which do not depend on any assumption
linking the tidal lags to the frequencies of the corresponding tidal waves
(except that equal frequency harmonics are assumed to span equal lags).
Emphasis is given to the cases of companions having reached one of the two
possible final states: (1) the super-synchronous stationary rotation resulting
from the vanishing of the average tidal torque; (2) the capture into a 1:1
spin-orbit resonance (true synchronization). In these cases, the energy
dissipation is controlled by the tidal harmonic with period equal to the
orbital period (instead of the semi-diurnal tide) and the singularity due to
the vanishing of the geometric phase lag does not exist. It is also shown that
the true synchronization with non-zero eccentricity is only possible if an
extra torque exists opposite to the tidal torque. The theory is developed
assuming that this additional torque is produced by an equatorial permanent
asymmetry in the companion. The results are model-dependent and the theory is
developed only to the second degree in eccentricity and inclination
(obliquity). It can easily be extended to higher orders, but formal accuracy
will not be a real improvement as long as the physics of the processes leading
to tidal lags is not better known.Comment: 30 pages, 7 figures, corrected typo
The Europa Clipper Gravity and Radio Science Investigation
The primary objective of the Europa Clipper mission is to assess the habitability of Europa, an overarching goal that rests on improving our understanding of Europaâs interior structure, composition, and geologic activity. Here we describe the Gravity and Radio Science (G/RS) investigation. The primary measurement, the gravitational tidal Love number k2 , will be an independent diagnostic of the presence of a global subsurface ocean, but G/RS will make a number of other key measurements related to Europaâs deep interior, silicate mantle-ocean interface, ice shell, ionosphere, and plasma environment. Although radio science is common to many missions, Europa Clipperâs orbit and spacecraft configuration during flybys present special challenges for the design of this experiment. The information obtained through G/RS will be complementary to the measurements by the other instruments onboard Europa Clipper, and their combined analysis will refine the geophysical understanding of Europa necessary to best assess its potential habitability
Stability of Terrestrial Planets in the Habitable Zone of Gl 777 A, HD 72659, Gl 614, 47 Uma and HD 4208
We have undertaken a thorough dynamical investigation of five extrasolar
planetary systems using extensive numerical experiments. The systems Gl 777 A,
HD 72659, Gl 614, 47 Uma and HD 4208 were examined concerning the question of
whether they could host terrestrial like planets in their habitable zones
(=HZ). First we investigated the mean motion resonances between fictitious
terrestrial planets and the existing gas giants in these five extrasolar
systems. Then a fine grid of initial conditions for a potential terrestrial
planet within the HZ was chosen for each system, from which the stability of
orbits was then assessed by direct integrations over a time interval of 1
million years. The computations were carried out using a Lie-series integration
method with an adaptive step size control. This integration method achieves
machine precision accuracy in a highly efficient and robust way, requiring no
special adjustments when the orbits have large eccentricities. The stability of
orbits was examined with a determination of the Renyi entropy, estimated from
recurrence plots, and with a more straight forward method based on the maximum
eccentricity achieved by the planet over the 1 million year integration.
Additionally, the eccentricity is an indication of the habitability of a
terrestrial planet in the HZ; any value of e>0.2 produces a significant
temperature difference on a planet's surface between apoapse and periapse. The
results for possible stable orbits for terrestrial planets in habitable zones
for the five systems are summarized as follows: for Gl 777 A nearly the entire
HZ is stable, for 47 Uma, HD 72659 and HD 4208 terrestrial planets can survive
for a sufficiently long time, while for Gl 614 our results exclude terrestrial
planets moving in stable orbits within the HZ.Comment: 14 pages, 18 figures submitted to A&
Modeling magnetospheric fields in the Jupiter system
The various processes which generate magnetic fields within the Jupiter
system are exemplary for a large class of similar processes occurring at other
planets in the solar system, but also around extrasolar planets. Jupiter's
large internal dynamo magnetic field generates a gigantic magnetosphere, which
is strongly rotational driven and possesses large plasma sources located deeply
within the magnetosphere. The combination of the latter two effects is the
primary reason for Jupiter's main auroral ovals. Jupiter's moon Ganymede is the
only known moon with an intrinsic dynamo magnetic field, which generates a
mini-magnetosphere located within Jupiter's larger magnetosphere including two
auroral ovals. Ganymede's magnetosphere is qualitatively different compared to
the one from Jupiter. It possesses no bow shock but develops Alfv\'en wings
similar to most of the extrasolar planets which orbit their host stars within
0.1 AU. New numerical models of Jupiter's and Ganymede's magnetospheres
presented here provide quantitative insight into the processes that maintain
these magnetospheres. Jupiter's magnetospheric field is approximately
time-periodic at the locations of Jupiter's moons and induces secondary
magnetic fields in electrically conductive layers such as subsurface oceans. In
the case of Ganymede, these secondary magnetic fields influence the oscillation
of the location of its auroral ovals. Based on dedicated Hubble Space Telescope
observations, an analysis of the amplitudes of the auroral oscillations
provides evidence that Ganymede harbors a subsurface ocean. Callisto in
contrast does not possess a mini-magnetosphere, but still shows a perturbed
magnetic field environment. Callisto's ionosphere and atmospheric UV emission
is different compared to the other Galilean satellites as it is primarily been
generated by solar photons compared to magnetospheric electrons.Comment: Chapter for Book: Planetary Magnetis
MaQuIsâConcept for a Mars Quantum Gravity Mission
The aim of this paper is to present the concept of a dedicated gravity field mission for the planet Mars, the Mars Quantum Gravity Mission (MaQuIs). The mission is targeted at improving the data on the gravitational field of Mars, enabling studies on planetary dynamics, seasonal changes, and subsurface water reservoirs. MaQuIs follows well known mission scenarios, currently deployed for Earth, and includes state-of-the-art quantum technologies to enhance the gained scientific signal
OSS (Outer Solar System): A fundamental and planetary physics mission to Neptune, Triton and the Kuiper Belt
The present OSS mission continues a long and bright tradition by associating
the communities of fundamental physics and planetary sciences in a single
mission with ambitious goals in both domains. OSS is an M-class mission to
explore the Neptune system almost half a century after flyby of the Voyager 2
spacecraft. Several discoveries were made by Voyager 2, including the Great
Dark Spot (which has now disappeared) and Triton's geysers. Voyager 2 revealed
the dynamics of Neptune's atmosphere and found four rings and evidence of ring
arcs above Neptune. Benefiting from a greatly improved instrumentation, it will
result in a striking advance in the study of the farthest planet of the Solar
System. Furthermore, OSS will provide a unique opportunity to visit a selected
Kuiper Belt object subsequent to the passage of the Neptunian system. It will
consolidate the hypothesis of the origin of Triton as a KBO captured by
Neptune, and improve our knowledge on the formation of the Solar system. The
probe will embark instruments allowing precise tracking of the probe during
cruise. It allows to perform the best controlled experiment for testing, in
deep space, the General Relativity, on which is based all the models of Solar
system formation. OSS is proposed as an international cooperation between ESA
and NASA, giving the capability for ESA to launch an M-class mission towards
the farthest planet of the Solar system, and to a Kuiper Belt object. The
proposed mission profile would allow to deliver a 500 kg class spacecraft. The
design of the probe is mainly constrained by the deep space gravity test in
order to minimise the perturbation of the accelerometer measurement.Comment: 43 pages, 10 figures, Accepted to Experimental Astronomy, Special
Issue Cosmic Vision. Revision according to reviewers comment
Compiling a Functional Logic Language: The Fair Scheme
Abstract. We present a compilation scheme for a functional logic programming language. The input program to our compiler is a constructor-based graph rewrit-ing system in a non-confluent, but well-behaved class. This input is an interme-diate representation of a functional logic program in a language such as Curry or T OY. The output program from our compiler consists of three procedures that make recursive calls and execute both rewrite and pull-tab steps. This output is an intermediate representation that is easy to encode in any number of programming languages. Our design evolves the Basic Scheme of Antoy and Peters by removing the âleft bias â that prevents obtaining results of some computationsâa behavior related to the order of evaluation, which is counter to declarative programming. The benefits of this evolution are not only the strong completeness of computa-tions, but also the provability of non-trivial properties of these computations. We rigorously describe the compiler design and prove some of its properties. To state and prove these properties, we introduce novel definitions of âneed â and âfail-ure. â For non-confluent constructor-based rewriting systems these concepts are more appropriate than the classic definition of need of Huet and Levy
- âŠ