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Abstract 

Ribosome-footprint profiling provides genome-wide snapshots of translation, but 
technical challenges can confound its analysis. Here, we use improved methods 
to obtain ribosome-footprint profiles and mRNA abundances that more faithfully 
reflect gene expression in Saccharomyces cerevisiae. Our results support 
proposals that both the beginning of coding regions and codons matching rare 
tRNAs are more slowly translated. They also indicate that emergent polypeptides 
with as few as three basic residues within a 10-residue window tend to slow 
translation. With the improved mRNA measurements, the variation attributable to 
translational control in exponentially growing yeast was less than previously 
reported, and most of this variation could be predicted with a simple model that 
considered mRNA abundance, upstream open reading frames, cap-proximal 
structure and nucleotide composition, and lengths of the coding and 5’-
untranslated regions. Collectively, our results reveal key features of translational 
control in yeast and provide a framework for executing and interpreting ribosome-
profiling studies. 
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Introduction 

The central dogma of molecular biology culminates in translation. During 
translation initiation, the small ribosomal subunit is recruited to the mRNA 
substrate, a suitable start codon is identified, and then the large ribosomal 
subunit joins to form a functional, elongation-competent ribosome. The ribosome 
then translocates along the mRNA, synthesizing the cognate protein, until 
reaching a stop codon, where release factors mediate release of the polypeptide, 
and recycling factors then dissociate the translation machinery.  
Although most cellular mRNAs use the same translation machinery, the 
dynamics of translation can vary between mRNAs and within mRNAs, sometimes 
with regulatory or functional consequences. For example, strong secondary 
structure within the 5' untranslated region (UTR) of a eukaryotic mRNA can 
impede the scanning ribosome, thereby reducing the rate of protein synthesis 
(Kozak, 1986a). The accessibility of the 5' cap, the presence of small ORFs 
within 5' UTRs referred to as upstream ORFs (uORFs), and the sequence 
context of the start codon of the ORF can also modulate the rate of translation 
initiation (Kozak, 1984; Godefroy-Colburn et al., 1985; Kozak, 1986b). Likewise, 
codon choice, mRNA structure, and the identity of the nascent polypeptide can 
influence elongation rates (Varenne et al., 1984; Hosoda et al., 2003; Brandman 
et al., 2012). In addition, differences in elongation rates can influence co-
translational protein folding, localization of the mRNA or protein, and in extreme 
cases the rate of protein production (Crombie et al., 1992; Letzring et al., 2010; 
Zhang and Shan, 2012). Finally, although translation termination is generally 
quite efficient, stop-codon read-through can introduce alternative C-terminal 
regions that affect protein stability, localization, or activity (Dunn et al., 2013).  
Variation in protein abundances observed in eukaryotic cells largely reflects 
variation in mRNA abundances, indicating that much of gene regulation occurs at 
the level of mRNA synthesis and decay (Csárdi et al. 2015). However, 
differences in translation rate also contribute to the regulation of eukaryotic 
protein abundances. Despite known examples of regulation at each stage of 
translation, translational regulation is largely controlled at the step of initiation, as 
expected when considering that this step is rate limiting for most mRNAs 
(Bulmer, 1991; Shah et al., 2013). 
The first demonstration that different mRNAs can be translated at different rates 
within the same cells was for the alpha and beta subunits of hemoglobin in rabbit 
reticulocytes. Despite the subunits being encoded on mRNAs of similar size, the 
beta-subunit mRNA is found on larger polysomes than the alpha-subunit mRNA 
(Hunt et al., 1968). This principle was later expanded to the genome-wide level 
with the use of microarrays to analyze the polysome profiles of thousands of 
mRNAs at once (Arava et al., 2003). Such studies in Saccharomyces cerevisiae 
suggested that ribosome densities vary among mRNAs over a 100-fold range 
(from 0.03 to 3.3 ribosomes per 100 nucleotides), indicating extensive translation 
control. More recently, the use of ribosome-footprint profiling has enabled 
transcriptome-wide analyses of translation using high-throughput sequencing, 
which again suggested a nearly 100-fold range of translational efficiencies (TEs) 
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in log-phase yeast (Ingolia et al., 2009). Here, we generate and analyze 
substantially improved transcriptome-wide datasets that yield new insights into 
the dynamics and regulation of translation in yeast. These improved data also 
constrict the differences in TEs observed in log-phase yeast, which can be 
largely predicted using a simple model that considers only six features of the 
mRNAs. 
 

Results 

Native ribosome footprints reveal the dynamics of elongation 

Protocols for analyzing polysome profiles or capturing ribosome footprints 
(referred to as ribosome-protected fragments, or RPFs) typically involve treating 
yeast cultures with the elongation inhibitor cycloheximide (CHX) to arrest the 
ribosomes prior to harvesting cells (Ingolia et al., 2009; Gerashchenko et al., 
2012; Zinshteyn and Gilbert, 2013; Artieri and Fraser, 2014b; McManus et al., 
2014). An advantage of CHX pre-treatment is that it prevents the run-off of 
ribosomes that can otherwise occur during the harvesting procedure. However, 
this treatment can also have some undesirable effects. Because CHX does not 
inhibit translation initiation or termination, pre-treatment of cultures leads to an 
accumulation of ribosomes at start codons and depletion of ribosomes at stop 
codons (Ingolia et al., 2011; Ingolia et al., 2012; Guydosh and Green, 2014). In 
addition, because CHX binding to the 80S ribosome is both non-instantaneous 
and reversible, the kinetics of CHX binding and dissociation might allow newly 
initiated ribosomes to translocate beyond the start codon. Another possible effect 
of CHX treatment is that ribosomes may preferentially arrest at specific codons 
that do not necessarily correspond to codons that are more abundantly occupied 
by ribosomes in untreated cells. Although these effects have minimal 
consequence for analyses at the mRNA level when comparing the mRNAs from 
the same gene in different conditions (e.g., Guo et al., 2010; Brar et al., 2012; 
Hsieh et al., 2012; Thoreen et al., 2012), or when comparing mRNAs from 
different genes after discarding reads corresponding to the 5' regions of ORFs 
(e.g., Subtelny et al., 2014), these effects of CHX pre-treatment could have 
severe consequences for analyses that require single-codon resolution. With this 
in mind, some recent studies have used alternative methods to arrest ribosomes 
(Guydosh and Green, 2014; Lareau et al., 2014). 
To avoid the confounding effects of CHX pre-treatment, we employed a protocol 
to rapidly harvest yeast cultures using filtration and flash freezing (Figure 1A). 
Importantly, our protocol minimizes the time that the cells experience starvation 
conditions, which lead to rapid ribosome run-off (Ashe et al., 2000; Guydosh and 
Green, 2014). CHX was included in the lysis buffer to inhibit translation 
elongation that might occur in lysates, perhaps during the room-temperature 
incubation used for RNase digestion, although we doubt this precaution was 
necessary.  
Another improvement was in the reaction used to attach the 5' adapter sequence. 
The original protocol used cDNA circularization (Ingolia et al., 2009), which can 
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introduce a strong sequence-specific bias at the 5' ends of reads (Artieri and 
Fraser, 2014a). Some subsequent protocols ligate to an RNA adapter prior to 
cDNA synthesis (Guo et al., 2010), which has other biases. Although the biases 
from either circularization or ligating adaptors are not expected to influence 
results of analyses performed at the level of whole mRNAs, they might influence 
results of higher-resolution analyses, such as those at the level of codons. 
Borrowing from methods developed for small-RNA sequencing (Jayaprakash et 
al., 2011; Sorefan et al., 2012), we minimized these other biases by ligating to a 
library of adapter molecules that included all possible sequences at the eight 3'-
terminal nucleotides.  
 

The 5' ramp of ribosomes  

Using the 5' ends of ribosome footprints and the known geometry of the 
ribosome, we inferred the position of the A site on each footprint and thereby 
identified the codon that was being decoded (Ingolia et al., 2009). Analysis of all 
mapped reads revealed the expected three-nucleotide periodicity along the 
ORFs, as well as ribosome accumulation at the start (Figure 1B) and stop (Figure 
1C) codons that presumably reflects slow steps following 60S subunit joining and 
preceding subunit dissociation, respectively.  
To examine the global landscape of 80S ribosomes, we averaged the position-
specific ribosome-footprint densities of individual genes into a composite 
metagene in which each gene is first normalized for its overall density of 
ribosome footprints (i.e., RPKM of RPFs) and then weighted equally in the 
average (Eqn S10). We observed a small 5' “ramp” of ribosomes in this 
metagene, with excess ribosome footprints across the first ~200 codons 
compared to the remainder of the ORF (Figure 1D). Compared to previous 
studies, the ramp in our dataset spanned a similar distance from the start codon 
but had a much smaller amplitude, with the excess relative ribosome-footprint 
density (e’j Eqn S10) following the first ten codons peaking at ~60% in our data 
compared to 110%–300% in other studies (Figure S1) (Ingolia et al., 2009; 
Gerashchenko et al., 2012; Zinshteyn and Gilbert, 2013; Artieri and Fraser, 
2014b; Guydosh and Green, 2014; McManus et al., 2014). The trend towards 
decreasing ribosome-footprint density with codon position was also evident on a 
gene-by-gene basis in our data, as 82% of genes exhibited a decreasing number 
of raw RPF reads along their entire gene-length based on linear-regression of 
RPF reads with codon position (binomial test, p < 10–15).  
For some previous ribosome-profiling studies, CHX pre-treatment presumably 
contributed to the size of the observed 5' ramp. To examine this possibility, we 
used a whole-cell stochastic model of yeast translation (Shah et al., 2013) to 
simulate protein translation in a yeast cell in the presence of CHX, and we found 
that simulated CHX pre-treatment can indeed induce 5' ramps of up to 300% 
(Figure S2). In these simulations, the ramp is due to both non-instantaneous 
CHX binding, which enables newly initiated ribosomes to begin translating the 
ORF before being initially arrested, as well as reversible binding, which enables 
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elongating ribosomes to translocate along the ORF as they undergo cycles of 
CHX binding, dissociation, and rebinding. Indeed, simulated CHX pre-treatment 
can induce ramps of different shapes and sizes depending on the on- and off-
rates of CHX binding (Figure S2). Thus, CHX pre-treatment might be responsible 
for the large ramps observed in other datasets, as has been recently 
demonstrated in experiments with variable amounts of CHX (Gerashchenko and 
Gladyshev, 2014). However, CHX pre-treatment cannot be responsible for the 
more modest 60% ramp observed in our dataset, since our protocol did not 
involve such treatment. 
The 5’ ramp of ribosomes has previously been attributed to slower elongation 
due to preferential use of codons corresponding to low-abundance cognate 
tRNAs in the 5’ ends of genes (Tuller et al., 2010). To determine the contribution 
of codon usage, we re-analyzed our ribosome-profiling data to determine 
whether differences in ribosome-footprint densities between the 5’ and 3’ ends of 
a gene depend on codon choice. For each of the 61 sense codons, the average 
density of ribosome footprints was 33% greater when the codon fell within the 
first 200 codons of an ORF than when it fell within the remainder of the ORF 
(Figure 1E). We observed similar results, though of an increased magnitude 
ranging from 38–89%, when analyzing data from previous ribosome-profiling 
studies (Figure S1). Thus, even the same codon triplet had elevated ribosome 
densities in the 5’ ends of ORFs compared to 3’ ends. Consistent with these 
experimental results, our simulation of protein translation (now in the absence of 
CHX) indicated that codon ordering could account for only a 20% ramp, over a 
large range of simulated parameters (Figure S2). These simulation results 
suggested that codon ordering may explain some of the ~60% ramp observed in 
our dataset, but that the majority of the ramp in our dataset was likely caused by 
mechanisms other than patterns of codon usage (see Discussion). 
 

Codon-specific elongation dwell times are inversely correlated with tRNA 
abundances 

In our dataset, the 61 sense codons varied in their average RPF densities by 
more than 6 fold (Figure 1E), suggesting that different codons are decoded at 
different rates. Molecular biologists have long assumed that such differences in 
elongation rates among codons are caused by corresponding differences in the 
cellular abundances of cognate tRNAs (Ikemura, 1981, 1985; Andersson and 
Kurland, 1990; Bulmer, 1991). Several early experiments provided empirical 
support for this view (Varenne et al., 1984; Sorensen and Pedersen, 1991; Zhou 
et al., 1999). However, early ribosome-profiling studies do not report the strong 
anti-correlation between ribosome-footprint density and cognate tRNA 
abundance expected from this model (Ingolia et al., 2011; Li et al., 2012; Qian et 
al., 2012; Charneski and Hurst, 2013; Zinshteyn and Gilbert, 2013).  
Suspecting that our improved methods might more precisely map the positions of 
the ribosomes during normal translation, we examined the relationship between 
our experimentally measured codon occupancies and measures of cognate tRNA 
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abundance. The codon-specific excess ribosome densities (vk, Eqn S19) were 
strongly anti-correlated with cognate tRNA abundances, as estimated by copy 
numbers of tRNA genes and wobble parameters (Figures 2A–B). As expected, 
this correlation was specific to the codon within the A site, with residual 
correlations at the P and E sites, which were potentially caused by some 5' 
heterogeneity of ribosome footprints. The codon-specific excess ribosome 
densities were also anti-correlated with direct estimates of tRNA abundances 
obtained from our RNA-seq measurements (Figure S3, Table S1).  In the 
meantime, others using flash-freezing without CHX pre-treatment have recently 
reported similar findings (Gardin et al., 2014).  
When examining previously published ribosome-profiling datasets, we found that 
whenever CHX pre-treatment was employed, the relationship between ribosome 
occupancy and tRNA abundance was absent (Figure S3). We also report 
elsewhere a re-analysis of data from a study that used a wide range of CHX 
concentrations (Gerashchenko and Gladyshev, 2014) supporting our hypothesis 
that CHX treatment systematically disrupts the measured positions of ribosomes. 
Moreover, the concordance between these CHX pre-treatment datasets indicated 
a systematic bias (Figure S3), suggesting that an orthogonal set of mRNA 
sequence biases influence CHX binding. Taken together, these results strongly 
support the idea that differential cognate tRNA abundances drive differential 
elongation times among codons, as can be revealed using ribosome-profiling 
experiments that do not pre-treat with CHX. 
At least three considerations help explain why CHX pre-treatment is expected to 
disrupt the correlation between tRNA abundances and measured ribosome 
densities at the A site. The first is that CHX, once bound to a ribosome, allows for 
an additional round of elongation before halting ribosomes (Schneider-Poetsch et 
al., 2010), which alone would remove a correlation at the A site and transfer it to 
the P site. Second, CHX binding is reversible, and at concentrations typically 
used in ribosome-profiling protocols, additional rounds of elongation might occur 
between CHX-binding events. Third, CHX prevents translocation of the ribosome 
by binding to the E site, with space for a deacylated tRNA (Schneider-Poetsch et 
al., 2010), and thus CHX binding affinity presumably varies with features of the E 
site and perhaps binding of the E-site tRNA if it influences CHX binding. Thus, in 
the presence of CHX pre-treatment, the ribosome density at a site is likely more 
a function of the on and off rates of CHX binding than a function of differential 
isoaccepting tRNA availability. 
 
Polybasic stretches induce widespread pausing of ribosomes 

Aside from the abundance of cognate tRNA, the ribosome-footprint density at a 
particular codon in an ORF might also be influenced by interactions between the 
emerging nascent polypeptide and the ribosome. Due to the negatively charged 
nature of the ribosome exit tunnel, polybasic tracts tend to make extensive 
electrostatic interactions with the tunnel that are thought to stall elongation (Lu 
and Deutsch, 2008; Charneski and Hurst, 2013). Consistent with this hypothesis, 
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we observed a peak of excess ribosome-footprint density (zij, Eqn S7) roughly 9 
amino acids after the start of highly positively charged regions (defined as six 
arginine or lysine residues within a 10 amino-acid window), which would position 
the basic residues within the exit tunnel (Figure 3A). For windows containing 
fewer basic residues, the pause amplitude steadily decreased as the number of 
basic residues decreased, but pausing was still apparent with as few as three 
basic residues within a 10 amino-acid window.  
Published ribosome-profiling datasets that used CHX pre-treatment all fail to 
show this pattern (Figure S4), which again suggested that drug treatment 
obscures the locations of natural elongation pauses. Indeed, results related to 
ours were observed in an earlier ribosome-profiling study conducted without CHX 
pre-treatment, although in that study analyses were limited to only 103 highly 
charged regions (Brandman et al., 2012). In contrast, our analyses quantified 
ribosome-footprint densities surrounding polybasic stretches ranging from ~1400 
windows containing six basic residues to ~48,000 windows containing three basic 
residues, which not only confirmed that elongation tends to stall as polybasic 
stretches reach the exit tunnel but also showed that this effect is far more 
widespread than anticipated. When simulating ribosome density surrounding 
polybasic stretches, we found a relative depletion of ribosomes in polybasic 
stretches (Figure S5), which indicated that the elongation stalls within polybasic 
stretches were not caused by biased codon usage and suggested that the 
observed excess ribosome-footprint density likely underestimated the direct 
effect of polybasic stretches on the elongation rate. 
 
Slower elongation at regions encoding inter-domain linkers  

The modulation of ribosome-footprint densities by either tRNA abundances 
(Figure 2A) or polybasic stretches (Figure 3A) would be expected to influence the 
kinetics of co-translational folding. Indeed, slower elongation rates within inter-
domain linkers relative to the adjacent domains is reported to coordinate co-
translational folding of nascent polypeptides (Thanaraj and Argos, 1996; Kimchi-
Sarfaty et al., 2007; Pechmann and Frydman, 2013). However, systematic 
experimental evidence for such differences in elongation rates has been lacking.  
To examine whether our ribosome-profiling data reveals such differences, we 
first used InterProScan classifications (Jones et al., 2014) based on the 
Superfamily database (Wilson et al., 2009) to partition coding sequences into 
domain and linker regions. For each ORF we calculated the mean normalized 
ribosome-footprint densities (zij, Eqn S7) for codons within the domain- and 
linker-encoding regions. Comparing between these subsets of sites, we found 
significantly lower densities in regions of genes that fell within domains compared 
to regions that fell outside of domains (Figure 3B, mean difference 0.094, paired 
t-test, p < 10–26). To eliminate any influence of the 5' ramp, we repeated the 
analyses, excluding the first 200 codons. Although the size of the effect was 
smaller when excluding the first 200 codons (mean diff = 0.029), the difference in 
mean ribosome densities was still significant (p = 0.0002), indicating that the 5' 
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ramp was not solely responsible for differences in ribosome densities between 
domains and other regions of proteins (Figure S6A).  
The trend towards relatively lower ribosome densities in domain regions holds 
even when restricted to each individual amino acid, with the exceptions of 
cysteine residues and the single-codon-encoded methionine and tryptophan 
residues (Figure S7).  Thus, differences in amino-acid content between domains 
and linkers cannot account for the observed differences in bound ribosome 
densities. Moreover, for 54 out of 61 sense codons, we find significantly higher 
ribosome densities in domains compared to linkers (one-sides t-test, p < 0.05).  
We find significantly higher ribosome densities in domains even after excluding 
the first 200 codons, for 26 out of 61 codons (one-sides t-test, p < 0.05). This 
result implies that differences in synonymous codon usage between domain and 
linker region cannot alone account for the differences in ribosome densities.  One 
possible mechanism for differential ribosome occupancy, independent of codon 
usage, is differential recruitment of chaperones and their associated effects on 
co-translational folding (Ingolia, 2014). 
Similar results comparing ribosome densities in domain and linker regions were 
obtained when using InterProScan classifications based on the Pfam domain 
database (Bateman et al., 2002) instead of the Superfamily database (Figure 
S6B). Finally, consistent with earlier computational analyses (Pechmann and 
Frydman, 2013), analysis of our data indicated that differences in elongation rate 
exist at the level of protein secondary structures as well: regions corresponding 
to helices and sheets exhibited significantly lower ribosome-footprint densities 
than regions corresponding to loops (Figure S6C). Although requirements for co-
translational folding have long been hypothesized to influence elongation rates, 
these results provided the first systematic empirical support of this claim. 
Nonetheless, the magnitude of the signal was very small, suggesting that slower 
inter-domain elongation either has very little impact or impacts very few genes.   
 
Estimates of protein-synthesis rates 

Taken together, our results indicate that the ribosome-footprint density at a given 
codon position within a gene is influenced by several factors, including the 
abundance of cognate tRNAs and whether the codon is immediately downstream 
of a polybasic stretch, falls within a protein domain, or lies in the 5’ region of the 
ORF. The non-uniform ribosome density along individual ORFs implies that the 
overall ribosome-footprint density on each gene (i.e., RPKM of RPFs) does not 
directly reflect the rate of protein synthesis (Li et al., 2014a). For example, the 
ribosome-footprint densities of genes enriched in more slowly elongated codons 
would tend to overestimate their protein synthesis rates; and the same would be 
true for shorter ORFs. 
To more accurately quantify the protein synthesis rates of individual genes from 
ribosome-footprint densities, we used empirically derived correction factors to 
account for the position- and codon-specific effects we have observed (fj, Eqn 
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S23). The ~74.3 million RPFs that we sequenced enabled reliable estimates of 
protein-synthesis rates for 4839 genes (Eqn S28).  
 
Accurate measurement of yeast mRNA abundances 

In addition to improving measurements of ribosome-footprint densities, we 
sought to improve measurements of mRNA abundances, which is also critical for 
accurately quantifying translational control. Prior experiments have typically 
measured yeast mRNA abundances by performing RNA-seq on poly(A)-selected 
RNA (Ingolia et al., 2009; Gerashchenko et al., 2012; Zinshteyn and Gilbert, 
2013; Artieri and Fraser, 2014b; Guydosh and Green, 2014; McManus et al., 
2014). However, poly(A) selection might bias mRNA-abundance measurements. 
For example, mRNAs that lack a poly(A) tail of sufficient length to stably 
hybridize to oligo(dT) might not be as efficiently recovered. Although S. 
cerevisiae is not known to contain translated mRNAs that altogether lack a 
poly(A) tail, the lengths of poly(A) tails found on S. cerevisiae mRNAs are 
relatively short (median length of 27 nt) (Subtelny et al., 2014). Another source of 
potential bias in poly(A)-selection is partial recovery of mRNAs 
endonucleolytically cleaved during RNA isolation or poly(A)-selection. The 5' 
fragments resulting from mRNA cleavage are not recovered by poly(A) selection, 
which causes a 3' bias in the resulting RNA-seq data (Nagalakshmi et al., 2008). 
Indeed, analyses of published RNA-seq datasets from ribosome-profiling studies 
revealed a severe 3' bias in poly(A)-selected RNA-seq reads, ranging from 19–
130% excess reads (Eqn S15) (Figure S8). Because longer mRNAs have a 
higher probability of being cleaved, the abundances of longer mRNAs might be 
systematically underestimated by poly(A) selection (Figure S9). 
One alternative to poly(A) selection is ribosomal RNA (rRNA) depletion, which 
enriches mRNAs by removing rRNA using subtractive hybridization. A potential 
concern with subtractive hybridization is the depletion of mRNAs that either 
cross-hybridize to the oligonucleotides used to remove rRNA sequences or 
adhere to the solid matrix to which the oligonucleotides are attached. To 
investigate the extent to which unintended mRNA depletion is a problem for the 
commercial reagents used for yeast RNA-seq library preparations, we subjected 
the same total RNA to each of three procedures: Dynabeads oligo(dT)25 (Life 
Technologies), RiboMinus Yeast Transcriptome Isolation Kit (Life Technologies), 
or Ribo-Zero Yeast Magnetic Gold Kit (Epicentre). As a reference, we also 
generated an RNA-seq library from the total RNA that was not enriched or 
depleted and therefore contained primarily rRNA (90.2% of ~199.7 million 
genome-mapping reads). Although this reference sample was critical here for 
evaluating the biases of mRNA enrichment methods, performing RNA-seq on 
total RNA is not ideal as a general approach because of the large number of 
reads required to obtain sufficient coverage of the mRNA transcriptome. We also 
note that we used total RNA extracted from the lysate that was used for ribosome 
footprint profiling, as opposed to RNA extracted from whole cells as done in the 
original ribosome-profiling study (Ingolia et al., 2009). When comparing the 4540 
mRNAs for which we obtained at least 64 reads in our total RNA library, only the 
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Ribo-Zero-treated sample faithfully recapitulated the mRNA abundances 
observed in total RNA (R2=0.98, Figure 4A, Figure S10). The poly(A)-selected 
and RiboMinus-treated samples each had significantly lower correlations with 
total RNA (R2=0.85 and R2=0.87, respectively), indicating a skewed 
representation of the transcriptome. Compared to published RNA-seq data from 
ribosome-profiling studies, our Ribo-Zero-treated sample also exhibited the 
highest correlations with microarray-based estimates of mRNA abundances 
(Figure S11). 
The poly(A)-selected and RiboMinus-treated samples were more poorly 
correlated with each other (R2=0.755, Figure S10) than with the total RNA 
sample, indicating that the poly(A)-selected and RiboMinus-treated samples were 
affected by different biases. As anticipated, the poly(A)-selected sample 
contained a strong 3' bias (Figure 4B), which caused a systematic 
underestimation of the abundances of longer genes (Figure 4C). After accounting 
for this strong bias in the poly(A)-selected sample, we did not detect a 
relationship between poly(A)-tail length and poly(A)-selection efficiency, 
suggesting that tail-length differences did not significantly contribute to the biases 
of poly(A)-selected RNA-seq data. In the case of the RiboMinus-treated sample, 
we suspect that the skewed mRNA abundances were likely due to cross-
hybridization of the depletion probes to mRNAs. Such effects were largely absent 
from the Ribo-Zero-treated sample, perhaps owing to the more stringent 
hybridization conditions of the Ribo-Zero protocol. The RiboMinus-treated sample 
also suffered from severe rRNA contamination (44.5% of reads, originating 
primarily from the 5S rRNA), which correspondingly reduced coverage of the 
mRNA transcriptome. 
Interestingly, even the total-RNA dataset contained a small 3' bias, which was 
also observed in the Ribo-Zero-treated RNA (Figure 4B). This bias was 
consistent with the notion that the bodies of yeast mRNAs are primarily degraded 
in the 5'-to-3' direction by the Xrn1 exoribonuclease (Hu et al., 2009). The decay 
intermediates of this vectorial degradation process would contribute more reads 
toward the 3' ends of mRNAs, giving rise to the observed bias (especially when 
considering that our RNA samples were enriched for cytoplasmic RNA, which 
would diminish the countervailing vectorial mRNA synthesis process occurring in 
the nucleus). Together our results indicate that Ribo-Zero treatment enables 
deep coverage of the yeast transcriptome without substantially biasing mRNA 
abundances. For all subsequent analyses we use mRNA abundances estimated 
from Ribo-Zero-treated RNA. 
 
 
A narrow range of initiation efficiencies in log-phase yeast 

We used our protein-synthesis rates and mRNA abundances to estimate the 
translation-initiation efficiencies of each gene. Because protein synthesis is 
typically limited by the rate of translation initiation (Bulmer, 1991; Shah et al., 
2013), we defined the initiation efficiency (IE) of a gene as its protein-synthesis 
rate divided by its mRNA abundance (Eqn S27). Thus, the IE measure quantified 
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the efficiency of protein production per mRNA molecule of a gene, in a typical 
cell. A wide range of IEs among genes would indicate that protein production is 
under strong translational control, whereas a narrow range of IEs would indicate 
that protein production is typically governed by mRNA abundances, and hence 
protein-synthesis rate is primarily controlled by mRNA transcription and decay. 
To facilitate comparisons with published datasets, we also calculated the 
translational efficiencies TEs, which have previously been used to quantify 
translational control (Ingolia et al., 2009). The TE value of a gene is the 
ribosome-footprint density normalized by the mRNA abundance. Because TE is 
calculated based on the ribosome-footprint density rather than the protein 
synthesis rate, TE does not account for differential rates of elongation associated 
with the 5' ramp or codon identity. Nonetheless, IE and TE were highly correlated 
(R = 0.951, Figure S12). 
The first ribosome-profiling study suggested a large amount of translational 
control in yeast, with the range of TEs reported to span roughly 100 fold (Ingolia 
et al., 2009). Indeed, we found that the 1–99 percentile range of TEs in those 
data spanned 73 fold (Figure S13). In contrast, the range of TEs observed in our 
data was narrower, with the 1–99 percentile spanning only a 15-fold range 
(Figure 5A). Although the range of IEs was marginally wider than that of TEs (1–
99 percentile spanning 21 fold, Figure S12), it was still substantially smaller than 
the range of TEs reported previously (Ingolia et al., 2009). The relatively narrow 
range of IEs in our data was also reflected by the high correlation between 
mRNA abundance and protein synthesis rate (R=0.948; Figure 5B), indicating 
that protein-synthesis rates are largely dictated by mRNA abundances with 
minimal contributions of differential initiation efficiencies (Csárdi et al. 2015). 
Consistent with this idea, when we examined mass-spectrometry-based 
measurements of steady-state protein abundance (de Godoy et al., 2008), we 
found indistinguishable correlations with mRNA abundances as with protein 
synthesis rates (Figure 5C). These analyses all suggest that mRNA abundance 
is a strong predictor of total protein production. Importantly, the range of 
ribosome-footprint densities closely mirrored the range of mRNA abundances 
except for a tail of lowly translated genes (Figure 5A, inset), indicating that 
translational control modestly expands the dynamic range of protein expression 
in log-phase yeast (Csárdi et al. 2015). 
When we examined the range of TEs in other published datasets, we also found 
a more narrow range (as low as 22 fold from 1–99 percentiles) than that of 
Ingolia et al. (2009) (Figure S13). However, the TEs in published datasets—
which were all generated using poly(A)-selected mRNA—are not particularly well 
correlated with each other (Table S2). These discrepancies in TEs are largely 
due to differences in measured mRNA abundances, whereas the ribosome-
footprint abundances correlated almost perfectly. Collectively, these results 
indicate that the amount of translational control in log-phase yeast has been 
overestimated due to inaccuracies in TE measurements, largely caused by 
challenges in accurately measuring mRNA levels. 
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We also noticed that the shape of the TE distribution from our data, which was 
asymmetric, differed from that of the Ingolia data, which is highly symmetric. In 
particular, in our data there were relatively few genes in the right tail of the 
distribution (Figure 5A, note the location of the mode closer to the 99th than the 
1st percentile). This observation implied that mRNAs from very few genes contain 
elements that impart an exceptionally high initiation efficiency and are thereby 
“translationally privileged”. Rather, most mRNAs initiate close to a maximum 
possible rate (likely set by the availability of free ribosomes or initiation factors) or 
contain features that modestly reduce the initiation rate.  
To the extent that differences in IE were observed, the genes with lower IE, 
tended to be expressed at lower mRNA levels, with IE increasing roughly linearly 
with mRNA expression levels (Figure 5D). These results were consistent with the 
notion that abundant mRNAs have undergone evolutionary selection to be 
efficiently translated (Bennetzen and Hall, 1982; Gouy and Gautier, 1982; Sharp 
and Li, 1987; Andersson and Kurland, 1990; Plotkin and Kudla, 2011; Shah and 
Gilchrist, 2011). Interestingly, this effect plateaued for the highest expressed 
mRNAs (RPKMs >1000), for which the differences in protein syntheses 
essentially matched the differences in mRNA (Figure 5B and Figure 5D, dashed 
lines), which suggested that the efficiency for the highest expressed mRNAs has 
reached a level that is difficult to surpass. 
We observed two notable outliers in the comparison of mRNA abundances and 
synthesis rates (Figure 5B, red dots). These two, which correspond to relatively 
abundant mRNAs with exceptionally low synthesis rates, were HAC1 and GCN4. 
These are the two most well-known examples of translational control in log-
phase yeast, and they are both involved in rapid stress responses. HAC1 
encodes a transcription factor that mediates the unfolded protein response (Cox 
and Walter, 1996; Kawahara et al., 1997). In the absence of protein-folding 
stress, HAC1 is translationally repressed due to base pairing interactions 
between the 5' UTR and intron (Ruegsegger et al., 2001). Upon stress, the non-
canonical intron is spliced out, which relieves the translational repression and 
enables rapid expression of Hac1 protein. GCN4 encodes a transcriptional 
activator that is the primary regulator of the transcriptional response to amino 
acid starvation (Hope and Struhl, 1985). The 5' UTR of GCN4 mRNA contains 
multiple uORFs that prevent translation of the Gcn4-coding ORF under nutrient 
replete conditions (Mueller and Hinnebusch, 1986). During amino acid starvation, 
reduced levels of the eIF2 ternary complex enable scanning ribosomes to bypass 
some of the uORFs and initiate translation at the GCN4 start codon (Dever et al., 
1992). The observation that HAC1 and GCN4 were the only abundant mRNAs 
that were strongly regulated at the translational level further emphasized that 
translational control only subtly modulates the protein production of most yeast 
genes. 
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Potential contribution of translational control to proportional synthesis 

Although more narrow than reported in earlier ribosome-profiling studies, the IE 
distribution that we observed was still large enough to enable the cell to tune 
synthesis rates via translational control. One scenario in which this might be 
important is in the proportional synthesis of the subunits for multiprotein 
complexes. A recent genome-wide study of protein synthesis rates in E. coli and 
S. cerevisiae concluded that components of multisubunit complexes are usually 
synthesized in precise proportion to their stoichiometry (Li et al., 2014a). In E. 
coli, the subunits of multiprotein complexes are usually encoded on the same 
polycistronic mRNA and thus can be synthesized in different proportions only if 
they have different translation-initiation rates. In eukaryotes, however, the 
subunits of protein complexes are encoded on separate mRNAs, which enables 
proportional synthesis to be achieved through control of mRNA abundance (via 
transcription rate and mRNA half-life). Nonetheless, translational control might 
still compensate for differences in mRNA abundance and thereby achieve more 
precise stoichiometry of synthesis rates.  
To explore this possibility, we examined the synthesis rates, mRNA abundances, 
and IEs of the subunits of stably associated complexes previously shown to 
undergo proportional synthesis (Li et al., 2014a). mRNAs encoding subunits of 
heterodimeric complexes had roughly similar abundances (within 2 fold), 
indicating that most of their proportional synthesis is achieved through 
coordinated mRNA levels (Figure 6A). The same was true for mRNAs encoding 
multiprotein complexes, after accounting for subunit stoichiometry (within ~2 fold, 
Figure 6B), as well for mRNAs encoding heterodimeric complexes containing 
alternative paralogous subunits (within 1.4 fold, Figure 6C). These observations 
were consistent with the narrow range of IEs in yeast; with limited translational 
control, proportional synthesis requires roughly proportional mRNA levels. 
However, in 12 out of 18 cases subunit stoichiometry was more accurately 
reflected by synthesis rates than by mRNA abundances (Figures 6Ans), as 
quantified by the coefficients of variation (Figure 6D). For example, the subunits 
of the heterodimeric FACT complex were translated at equal levels despite the 
Spt16-encoding mRNA being 59% more abundant than the Pob3-encoding 
mRNA. Similarly, in the mitochondrial alpha-ketoglutarate dehydrogenase 
complex, higher expression of the Kdg2 subunit relative to the Kdg1 subunit 
(which are present in a 2:1 stoichiometry in the complex) was achieved entirely at 
the level of translation. Although the fraction of 12 of 18 did not pass our 
threshold for statistical significance (p = 0.07, binomial test), these results hinted 
that translational control compensates for small differences in mRNA levels to 
achieve more proportional synthesis. We also found that mRNAs encoding 
proportionally synthesized subunits of heterodimeric complexes tended to have 
similar IEs (R2 = 0.72, Figure 6A), suggesting that such mRNAs might be 
coregulated at the level of translation. 
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Determinants of initiation efficiencies in yeast 

Next, we sought to identify sequence-based features that might explain the 
variation in measured IE values among genes. First we considered uORFS, 
which can inhibit translation by serving as decoys to prevent initiation at the start 
codons of bona fide ORFs, as observed in the extreme case of GCN4. Using 
recently described single-nucleotide-resolution 5' UTR annotations (Arribere and 
Gilbert, 2013), we identified upstream ATGs (uATGs) in 303 out of the 2549 
ORFs that had reproducibly uniform 5' ends. Those genes containing uATGs had 
significantly lower IEs than genes without uATGs (Figure 7A, t-test p < 10–16), 
even after controlling for 5' UTR lengths. These results confirmed that a general 
feature of uORFs is to decrease the translation of downstream ORFs, and that 
the presence of uATGs can explain some of the variance in IEs. 
Another mRNA feature that has been linked to differences in synthesis rates is 
mRNA secondary structure. In bacteria, accessibility of the Shine–Delgarno 
sequence, which directly binds the 40S ribosome subunit during translation 
initiation, is likely the primary determinant of synthesis rates (Gold, 1988). In 
eukaryotes, cap-dependent translation initiation involves binding of the eIF4F 
complex to the cap, followed by scanning of the 40S ribosome to the start codon. 
Structure located near the 5' cap might interfere with binding of the eIF4F cap-
binding complex, while structure within the 5' UTR could disrupt the scanning 
40S ribosome. An open structure around the start codon might also be important 
for facilitating joining of the 60S subunit. Previous genome-wide structure 
analyses revealed a weak but significant inverse correlation between start-
codon-proximal structure and TE (Kertesz et al., 2010; Ouyang et al., 2013), but 
the accessibility of the 5' UTR more generally was not reported, and the TE 
values used in those studies were affected by RNA-seq biases. Incorporating 
improved 5' UTR annotations (Arribere and Gilbert, 2013) and our IE 
measurements, we analyzed the effects of predicted secondary structure 
throughout the 5' UTRs. For each mRNA with a single reproducible 5' end, we 
predicted the accessibility of the 5' cap by calculating the predicted folding 
energy of the sequence spanning increasing distances from the cap. For all 
distances examined, we observed a significant correlation between predicted cap 
accessibility and IE (t-test, p < 10–6 for each window; Figure 7B, Figure S14). 
This correlation rapidly increased with window length, approaching a maximum at 
70–90 nucleotides (Pearson correlation, R ~ 0.37 for windows 70-90 nts long) 
and then steadily declined for larger windows (Figure S14), consistent with local 
folding of the 5' end determining cap accessibility. Notably, the correlations that 
we observed between mRNA structure and translation were the largest that have 
been reported between these features in eukaryotes, emphasizing the utility of 
our accurate IE measurements. Together, these results confirmed that mRNAs 
with less-structured 5' UTRs tend to be initiated more efficiently (Godefroy-
Colburn et al., 1985; Shah et al., 2013), which is consistent with eIF4F binding, 
40S recruitment, or scanning as influential regulatory steps during eukaryotic 
initiation. 
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In addition to uORFs and mRNA structure, gene length has also been reported to 
correlate with translational efficiency. In early microarray-based studies of 
ribosome density, ORF length was strongly anti-correlated with ribosome density 
(Arava et al., 2003). However, our analysis of published ribosome-profiling data 
revealed essentially no correlation (or even a positive correlation in one case) 
between length and TE  (Figure S15). In contrast, we observed a striking 
negative correlation in our IE (and correspondingly in our TE) data (Figure 7C, 
Figure S15). Our IE measure already corrected for the small “ramp” of elevated 
5’ ribosome densities and thus the correlation between IE and ORF length was 
not caused by this ramp. Moreover, the negative correlation between ORF length 
and TE persisted even after removing the first 250 codons of each ORF, which 
further confirmed that the correlation was not caused by the 5’ ramp of elevated 
ribosome densities (Figure S15). The discrepancy between our data and earlier 
ribosome-profiling datasets was likely due to the RNA-seq 3'-bias caused by 
poly(A) selection (Figure 4B, Figure S8). Indeed, we could recover the anti-
correlation between ORF length and TE in most other datasets when we 
controlled for the 3' bias by estimating mRNA abundances based on mapped 
RNA-seq reads from only the 3' ends of genes (Figure S16). Together, these 
results showed that the original report of shorter mRNAs having relatively higher 
initiation efficiencies (Arava et al., 2003) is correct, even after accounting for the 
CHX-enhanced 5' ramp that confounded that analysis. 
Based on these results, we used multiple linear regression to build a model that 
considered number of uATGs, predicted cap-proximal RNA-folding energy (and 
also GC content of the 5' UTR as another metric for structure), and lengths of 
ORFs and 5' UTRs to explain the variance in IE observed among genes. We also 
included an mRNA-abundance term in the model, because IE is greater for more 
abundant mRNAs (Figure 5D). To identify the most informative features, we used 
Akaike's Information Criteria (AIC) for model selection and both step-up and step-
down model-selection procedures (using the stepAIC function in the MASS 
package in R). The multiple regression model that best explained the variation in 
IE included all six variables, even after penalizing for model complexity (Figure 
7D, Table S3). The dominant explanatory variable was mRNA abundance, which 
alone accounted for ~40% of the variance in IE. Collectively, a model containing 
all six variables explained ~58% of the variance in IE. A model that excluded 
mRNA abundance, and therefore depended on only sequence-based features, 
still explained ~39% of the variance in IE. These results of our statistical 
modeling should help motivate mechanistic studies of how each of these mRNA 
features impacts translation. 
 

Discussion 

Widespread changes in elongation rate along mRNAs 

We have shown that accurate measurements of both mRNA abundances and 
ribosome footprints can reveal new insights into the regulation and dynamics of 
eukaryotic translation. The native ribosome footprints that we isolated and 
sequenced are indicative of a dynamic and heterogeneous elongation process, 
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with ribosomes transiting along mRNA molecules at variable rates depending on 
the distance from the start codon, codon identity, and polypeptide sequence. 
The 5' ramp of ribosomes that we observed was much smaller than ramps 
observed under CHX pre-treatment (Figure S1), which was consistent with the 
predicted effects of CHX. Codon usage accounted for about a third of the 
residual ramp we observed, but even the same codons were differentially 
occupied by ribosomes depending upon whether they occurred in the 5' or 3' 
ends of genes (Figure 1E), indicating that additional mechanisms must be 
involved. Potential mechanisms include ribosome drop-off during elongation or 
an overall (i.e., codon- and gene- independent) slower elongation rate during the 
early phase of translation. Although we cannot rule out ribosome drop-off as a 
contributing factor, the observation that ribosome-footprint density eventually 
becomes constant after 200 codons argues against a constant abortion rate 
during elongation. Instead, our results are most consistent with a global reduction 
in the early elongation rate irrespective of codon usage. One intriguing possibility 
is that the 80S ribosome remains engaged with one or more initiation factors 
during early elongation. In this scenario, the bound initiation factor would 
maintain the ribosome in a slower state until the factor stochastically dissociates 
from the ribosome within the first 200 codons. The eIF3 complex is a promising 
candidate for such a factor, as it binds the solvent-exposed face of the 40S 
ribosome (Siridechadilok et al., 2005) and can therefore bind to 80S ribosomes 
as well (Beznoskova et al., 2013). Maintaining eIF3 on early elongating 
ribosomes might also facilitate re-initiation after translation of short uORFs 
(Szamecz et al., 2008). 
We also detected stalling of elongating ribosomes after translation of polybasic 
regions, which presumably interact electrostatically with the ribosome exit tunnel 
(Figure 3A). Although this stalling had been previously reported for highly 
charged regions (Brandman et al., 2012), our analyses indicate that this effect is 
detectable even for stretches with as few as three basic residues. As a result, 
polybasic-stretch-induced stalling is a surprisingly widespread phenomenon 
during translation elongation and might impose constraints on protein sequence 
evolution. In the case of highly charged regions, ribosome stalling has been 
shown to trigger nascent polypeptide degradation by the proteasome through the 
ribosome quality control (RQC) complex (Brandman et al., 2012). Whether the 
thousands of weaker stalling events similarly trigger RQC-mediated polypeptide 
degradation remains an open question.  
 
Impact of mRNA enrichment method 

A practical finding of our studies is that the choice of mRNA enrichment method 
can have a significant impact on yeast mRNA-abundance measurements. rRNA 
depletion using the Ribo-Zero kit emerged as the only method that enriched for 
mRNAs without introducing substantial and systematic biases (Figure 4A, Figure 
S10). However, rRNA-depleted samples still contain large amounts of tRNAs, 
snRNAs, and other noncoding RNAs, which reduces coverage of the mRNA 
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transcriptome. Another caveat of rRNA depletion is that nascent pre-mRNAs that 
lack a poly(A) tail are also recovered, which can inflate mRNA abundance 
measurements with respect to the pool of translatable mRNA molecules 
(although this concern is minimized when using cytoplasmically enriched lysate 
as the input material for RNA-seq). This effect may be more pronounced in 
metazoans that contain long introns and correspondingly long transcription times. 
The extent to which poly(A)-selection biases affect metazoan mRNA abundance 
data, which would thereby influence TE measurements, remains to be 
determined. 
 

Evaluating the range and accuracy of TE measurements 
The initial report that TE spans a roughly 100-fold range across mRNAs in 
budding yeast spurred intensive investigation of the underlying TE determinants, 
yet there has been minimal success (Kertesz et al., 2010; Robbins-Pianka et al., 
2010; Rojas-Duran and Gilbert, 2012; Ouyang et al., 2013; Rouskin et al., 2014). 
Our results showed that this apparently wide range of TEs is partly explained by 
inaccurate mRNA-abundance measurements, which comprise the denominators 
of the TE ratios. After identifying and minimizing this source of inaccuracy, we 
observed a more narrow range of TEs and IEs (Figure 5A, Figure S12), 
suggesting a more limited degree of translational control than previously reported 
(Csárdi et al. 2015). 
The TE range that we observed in our experiments in yeast was more similar to 
the range observed in mouse embryonic stem cells (Ingolia et al., 2011), 
suggesting that limited translational control is a general principle of gene 
regulation in rapidly dividing eukaryotic cells. Notably, a study in mouse NIH3T3 
cells reached the opposite conclusion: that protein abundance is predominantly 
controlled at the level of translation (Schwanhausser et al., 2011). However, 
reanalysis of the NIH3T3 data with more rigorous accounting for experimental 
error has raised doubts about the validity of that conclusion (Li et al., 2014b).  
Although the range of TEs we identify is smaller than that reported earlier, it is 
nonetheless sufficient for a cell to tune protein synthesis levels. Indeed, IE 
differences might contribute to the remarkably proportional synthesis of subunits 
in multiprotein complexes in yeast (Figure 6). However, the potential contribution 
to proportional synthesis of subunits was lower than that observed in bacteria (Li 
et al., 2014a), presumably because the absence of operons in eukaryotes 
uncouples mRNA abundances across the transcriptome, reducing the 
dependence on translational control. 
The weak agreement between our TEs and published TEs (Table S2) suggest 
that care should be taken in interpreting analyses of published TEs. For example, 
the previous inability to identify strong correlates of yeast TEs was primarily due 
to the TEs themselves. Importantly, however, analyses of how the TE of a gene 
changes across conditions (e.g., during a stress response or a developmental 
program) are less prone to the biases that we have identified, as gene-specific 

peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/021501doi: bioRxiv preprint first posted online Jun. 26, 2015; 

http://dx.doi.org/10.1101/021501


biases in RNA-seq measurements cancel out when taking the ratio of TEs for the 
same gene in two different conditions. 
 
Mechanisms by which structure and length affect yeast TEs 

Using our IE measurements, we were able to generate a statistical model that 
explained a majority of the IE variance (Figure 7D, Table S3). One major finding 
is that secondary structure within the 5' UTR appears to be an important 
determinant of IE. These results are in agreement with mechanistic studies 
demonstrating that cap accessibility correlates with initiation efficiency (Godefroy-
Colburn et al., 1985) and that stable 5'-UTR secondary structures block the 
scanning ribosome. One caveat of our structure analyses is that we used in silico 
prediction of mRNA structure, which does not always accurately capture the in 
vivo structure of mRNA (Rouskin et al., 2014). Further indicating the inadequacy 
of in silico predictions was the benefit of also including 5'-UTR GC content as a 
feature in our model. Therefore, mRNA structure presumably explains even more 
variation in IE than our analyses suggest. Future work will be required to modify 
the in vivo genome-wide structure probing method (DMS-seq) to be able capture 
the 5' UTRs of mRNAs, which are depleted in the current protocol (Rouskin and 
Weissman, personal communication).  
We also find that longer ORFs tend to be more poorly translated in log-phase 
yeast, even after accounting for the small 5' ramp (Figure 7C). Given that 
initiation occurs at the 5' ends of mRNAs, how might initiation rates be sensitive 
to ORF lengths? One possibility is that shorter mRNAs, which include ribosomal 
proteins and other housekeeping genes (Hurowitz and Brown, 2003), might be 
under selection for faster initiation rates by virtue of their high expression. 
However, our stepwise regression showed that ORF length was informative even 
after accounting for mRNA abundance. Another intriguing possibility is that the 5'-
UTR-bound initiation machinery can sense and be affected by ORF length via the 
closed-loop structure. In eukaryotes, translating mRNAs are thought to adopt a 
pseudo-circularized structure in which the 5'- and 3'-ends are in close proximity, 
enhancing translation and mRNA stability (Christensen et al., 1987). This closed-
loop conformation is stabilized by the scaffold protein eIF4G, which can 
simultaneously interact with cap-bound eIF4E and poly(A)-tail-bound PABP 
(Tarun and Sachs, 1996; Wells et al., 1998). Previous biochemical analysis of the 
closed loop in yeast extracts revealed that only short mRNAs adopt a stable 
closed-loop structure in vitro (Amrani et al., 2008), presumably due to the 
relatively short distance between the mRNA termini. If the same principle applies 
in vivo, then inefficient closed-loop formation of long mRNAs could explain their 
relatively low IEs. Experimental evidence for this model comes from the 
observation that depletion of eIF4G, which would disrupt the closed loop, 
disproportionately reduces the TEs of shorter genes compared to longer genes 
(Clarkson et al., 2010; Park et al., 2011). However, direct evidence that closed-
loop formation is affected by mRNA length and contributes to the IE–length 
correlation awaits the ability to assay closed loops genome-wide in vivo. 
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Materials and Methods 
 
Yeast culture, harvesting, and lysate preparation 
S. cerevisiae strain BY4741 (MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0) was grown 
at 30° C in 500 ml YPD to OD600 0.5. Cells were harvested by filtration onto a 
Supor 450 Membrane 0.45 µm Disc Filter (Pall #60206) that had been pre-wet 
with YPD using a Kontes Ultra-Ware Microfiltration Assembly (Kimble Chase 
Kontes #953825-0090). As the last liquid flowed through, the filtration apparatus 
was rapidly disassembled, cells were gently scraped off of the filter using a cell 
lifter (Corning #3008), and the scraper was immediately submerged in a 50-ml 
conical tube filled with liquid nitrogen. Once all of the liquid nitrogen had boiled 
off, the resulting pellet of yeast cells was stored in the conical tube at –80° C until 
lysis. 
To lyse cells under cryogenic conditions, the cell pellet was transferred into a 
pre-chilled mortar that was surrounded and filled with liquid nitrogen. The pellet 
was ground to a fine powder with a pre-chilled pestle, transferred into a 50-ml 
conical tube filled with liquid nitrogen, and after boiling off the liquid stored at –
80° C. 
Crude lysate was prepared by briefly thawing the cell powder on ice for 1 min 
and then resuspending in 4 ml Polysome Lysis Buffer (10 mM Tris-HCl pH 7.4, 5 
mM MgCl2, 100 mM KCl, 1% Triton X-100). The lysate was spun at 1300g for 10 
min, and the supernatant was flash frozen in single-use aliquots.  
 
RNA-seq 
Total RNA was extracted from an aliquot of frozen yeast lysate using TRI reagent 
(according to the manufacturer’s protocol). The same total RNA was subjected to 
the different mRNA enrichment methods as follows: 
Total RNA: 500 ng of RNA was immediately subjected to ethanol precipitation, as 
described below. 
Dynabeads oligo(dT)25: Poly(A) selection was performed using 100 µl 
Dynabeads oligo(dT)25 (Life Technologies) according to the manufacturer’s 
instructions, except that 30 µg of total RNA was used as starting material. 
RiboMinus: rRNA depletion was performed on 4 µg total RNA using the 
RiboMinus Yeast Transcriptome Isolation Kit (Life Technologies) according to the 
manufacturer’s instructions. 
Ribo-Zero Magnetic Gold: rRNA depletion was performed on 10 µg total RNA 
using the Ribo-Zero Gold Yeast rRNA Removal Kit (Illumina) according to the 
manufacturer’s instructions, without the addition of RiboGuard RNase Inhibitor. 
Following mRNA enrichment, RNA samples were diluted to 90 µl with nuclease-
free water and precipitated with 10 µl 3 M NaCl, 30 µg GlycoBlue (Life 
Technologies), and 250 µl ethanol. RNA-seq was performed exactly as described 
in Subtelny et al. (2015) using 5 cycles of PCR. 
  

peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/021501doi: bioRxiv preprint first posted online Jun. 26, 2015; 

http://dx.doi.org/10.1101/021501


Ribosome profiling 
Ribosome-protected fragments were isolated from an aliquot of frozen yeast 
lysate and sequenced on the Illumina HiSeq platform, as described in Subtelny et 
al. (2014). RNase I treatment was performed using 0.2 U/µL lysate. Subtractive 
hybridization to remove contaminating rRNA fragments was performed using a 
mixture of three biotinylated oligonucleotides: 5'-
GATCGGTCGATTGTGCACCTC/3Bio/; 5'-CGCTTCATTGAATAAGTAAAG/3Bio/; 
5'-GACGCCTTATTCGTATCCATC/3Bio/ 
 
Estimating tRNA abundances from RNA-seq 
To estimate tRNA abundances, RNA-seq reads from the Ribo-Zero-treated 
sample were mapped to annotated S. cerevisiae tRNA loci (downloaded from 
Ensembl) using Bowtie, allowing up to one mismatch and sampling alignments 
for multiply mapping reads (options -n 1 -l 25 -e 100 -M 1 --best --strata). The 
total number of reads corresponding to each tRNA anticodon were tallied, and 
wobble parameters were used to estimate cognate tRNA abundances for 
individual codons. 
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Figure 1: Unperturbed RPFs reveal a codon-independent 5’ ramp. (A) Outline of the flash-freeze
protocol performed without CHX pre-treatment. (B-C) Metagene analyses of RPFs. Coding
sequences were aligned by their start (B) or stop (C) codons (red shading). Plotted are the numbers
of 28-30 nt RPF reads with the inferred ribosomal A site mapping to the indicated position along
the ORF. (D) Metagene analyses of RPFs and RNA-seq reads (mRNA). ORFs with at least 128
total mapped reads between ribosome-footprint (red) and RNA-seq (blue) samples were individually
normalized by the mean reads within the ORF, and then averaged with equal weight for each codon
position across all ORFs (e0

j

Eqn. S10 and h0
j

Eqn. S14). (E) Comparison of codon-specific RPFs
as a function of the 5’ ramp. For each of the codons, densities of RPFs with ribosomal A sites
mapping to that codon were calculated using either only the ramp region of each ORF (codons
1-200) or the remainder of each ORF (v5

0
k

Eqn. S16 and v3
0

k

Eqn. S17, respectively). The diagonal
line indicates the result expected for no di↵erence between the two regions.
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Figure 2: Codons corresponding to lower-abundance tRNAs are decoded more slowly. (A) Cor-
relation between codon-specific excess ribosome densities and cognate tRNA abundances. Codons
within RPFs were assigned to the A-, P-, and E-site positions based on the distance from the 5’ ends
of fragments, and codon-specific excess ribosome densities were calculated (v

k

, Eqn. S19). Cognate
tRNA abundances for each codon were estimated using the genomic copy numbers of iso-accepting
tRNAs and wobble parameters (Table S4). Spearman R values are shown, with their significance
(p values). (B) The correlations of codontRNA abundance at di↵erent positions relative to the A
site. Analysis was as in (A) using varying o↵sets from the A-site position within RPFs (x axis) to
calculate Spearman correlations (y axis). Dotted lines reflect the expected correlations at p = 0.05
significance.

peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/021501doi: bioRxiv preprint first posted online Jun. 26, 2015; 

http://dx.doi.org/10.1101/021501


Figure 3

-40 -20 0 20 40 60

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

3 residues
4 residues
5 residues
6 residues

Distance from polybasic tract

N
or

m
al

iz
ed

 ri
bo

so
m

e 
de

ns
ity

A

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p < 10−26

Mean normalized ribosome density
C

um
ul

at
iv

e 
de

ns
ity

Domains
Non-domains

B

Figure 3: Elongation dynamics correlate with amino acid sequence and domain architecture. (A)
Metagene analysis of normalized ribosome density surrounding polybasic tracts. Regions within
ORFs that contained the indicated number of basic residues (arginine and lysine) within a stretch
of 10 amino acids were aligned by the start of the region. Plotted are the normalized ribosome den-
sities (z

ij

, Eqn. S7) observed at each codon position. (B) Cumulative distributions of normalized
ribosome densities within and outside of protein-folding domains. Mean normalized RPF densities
(z

ij

, Eqn. S7) for codons within the domain-encoding and non-domain-encoding regions were indi-
vidually calculated for each ORF. Domain assignments were based on InterProScan classifications
(JONES et al. 2014) obtained from the Superfamily database (WILSON et al. 2009). Statistical
significance was evaluated using paired t-test (p < 10�26).
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Figure 4: mRNA enrichment methods can bias mRNA abundance measurements. (A) mRNA
abundances measured by RNA-seq of Ribo-Zero-treated RNA compared to those measured by
RNA-seq of total unselected RNA. Pearson R2 is indicated. (B) Metagene analysis of RNA-seq
read density in total unselected or mRNA-enriched RNA samples. Coding sequences were aligned
by their stop codons, and RNA-seq reads were individually normalized by the mean reads within the
ORF and then averaged with equal weight for each codon position across all ORFs (h00

j

Eqn. S15).
C) mRNA abundances for mRNA-enriched samples relative to total unselected RNA, as a function
of ORF length.
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Figure 5: TEs and IEs span a narrow range in log-phase yeast cells. (A) Distributions of TE, RPF
and mRNA measurements. The TE distribution is on the left, with vertical dashed lines marking
the 1st and 99th percentiles, and the fold-change separating these percentiles indicated. Overlaid
distributions of RPF densities (blue) and mRNA abundances (green) are on the right. All ORFs
with at least 128 total reads between the ribosome-profiling and RNA-seq datasets were included
(except YCR024C-B, which was excluded because it is likely the 3’ UTR of PMP1 rather than an
independently transcribed gene). (B) Relationship between and protein-synthesis rate and mRNA
abundance for genes shown in (A). GCN4 and HAC1 (red points) were the only abundant mRNAs
with exceptionally low protein-synthesis rates. The best linear least-squares fit to the data is shown
(solid line), with the Pearson R. For reference, a one-to-one relationship between protein synthesis
rate and mRNA abundance is also shown, which fits well to the data for genes with RPKM > 1000
(dashed line). (C) Relationship between with experimentally measured protein abundance (de
Godoy et al., 2008) and either protein-synthesis rate (left) or mRNA abundance (right). The 3,845
genes from (A) for which protein-abundance measurements were available were included in these
analyses. Pearson correlations are shown (R). (D) Relationship between mRNA abundance and
IE for genes shown in (A). The best linear least-squares fit to the data is shown (solid line), with
the Pearson R. The plateauing of IE, observed for the genes with RPKM > 1000, is also indicated
(dashed red line).
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Figure 6: mRNA abundance and translational control contribute to proportional synthesis. (A)
Analysis of complexes with two equimolar subunits. For each heterodimeric complex, the mRNA
abundances (left), synthesis rates (middle), and IEs (right) of the individual subunits are plotted
(with the subunit whose systematic name is first alphabetically on the x axis). All of the het-
erodimeric complexes characterized in Li et al. (2014) are shown, with the exception of the Smc2/4
complex, which substantially deviates from proportional synthesis in both our dataset and the pub-
lished dataset. Dashed lines indicate 2-fold di↵erences. (B) Analysis of multi-protein complexes.
For each complex, the mRNA abundances, synthesis rates, and IEs of its subunits are plotted
as a function of subunit stoichiometry. Dashed line passes through the origin and mean of the
data-points. (C) Analyses of complexes containing paralogous subunits. For each complex, data
for alternative subunits are plotted in the same column relative to the data for the constitutive
subunit (Tub2 for the ↵�-tubulin complex, Sec23 for the COPII vesicle coat). (D) Comparison of
the di↵erences in mRNA abundances with those of synthesis rates for each of the complexes in (A)
and (B). Data were normalized to subunit stoichiometry, and coe�cients of variation (CVs) were
calculated using all subunits within each complex. CVs were calculated similarly for the Sec23-
and Tub2-containing complexes, except that data for paralogous subunits (Tub1 and Tub3; Sec24,
Sfb2, and Sfb3) were first summed.
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Figure 7: Sequence-based features of mRNAs largely explain yeast IEs. (A) Reduced IE values
for genes with at least one upstream ATG (i.e., an ATG codon located within the annotated 5’
UTR). The plots indicated the median (line), quartile (box) and 1st and 99th percentiles (whiskers)
of the distributions. (B) Inverse relationship between IE and the folding energy of predicted RNA
secondary structure near the cap (Cap-folding energy). RNAfold was used to estimate folding
energies for the first 70 nts of the mRNA. Gray bars indicate ±2 SE of IE values for genes binned
by predicted folding energy. The best linear least-squares fit to the data is shown (solid line), with
the Pearson R. (C) Inverse relationship between IE and ORF length. The best linear least-squares
fit to the data is shown (solid line), with the Pearson R. (D) Correspondence between predicted IEs
and experimentally inferred IEs. Initiation e�ciencies were predicted using a multiple-regression
model, based on mRNA abundance and sequence-based features of the 2,549 genes with empirically
determined 5’-UTRs. Shown is the Pearson R.
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Figure S2: Whole-cell simulations of the 5’ ramp of ribosomes. (A-B) Metagene analyses of
ribosome-footprint density based on the whole-cell simulation model (SHAH et al. 2013). Simu-
lations with CHX pre-treatment were performed as described in Section 2 of the Supporting File.
Simulated RPF reads in ORFs were individually normalized by the mean RPF reads within the
ORF, and then averaged with equal weight for each codon position across all ORFs (e0

j

Eqn. S10).
We simulated protein synthesis under no-CHX, and either (A) four di↵erent CHX arrest probabil-
ities (p

chx�on

) and a fixed CHX dissociation rate (r
chx�off

), or (B) a fixed CHX arrest probability
(p

chx�on

) and four di↵erent CHX dissociation rates (r
chx�off

). Increasing p
chx�on

led to higher
ramps, whereas increasing r

chx�off

led to lower ramps as well as a shift of the peak ribosome
density towards the 3’ end. (B-G) Metagene analysis of RPF density observed in the flash-freeze
experiment compared with the results of the whole-cell simulation model. Otherwise, as in (A).

peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/021501doi: bioRxiv preprint first posted online Jun. 26, 2015; 

http://dx.doi.org/10.1101/021501


Figure 2 - fig suppl 1

-4 -2 0 2 4

-1
.0

-0
.5

0.
0

0.
5

1.
0

A-site

P-site

E-site

Codon offset

C
od

on
-s

pe
ci

fic
 ri

bo
so

m
e 

de
ns

ity
 v

s 
1/

tR
N

A
A

-4 -2 0 2 4

-1
.0

-0
.5

0.
0

0.
5

1.
0

A-site

P-site E-site

Codon offset

C
od

on
-s

pe
ci

fic
 ri

bo
so

m
e 

de
ns

ity
 v

s 
1/

tR
N

A

B

Flash-freeze
Ingolia
Gerashchenko
Zinshteyn
McManus
Artieri
Guydosh

-4 -2 0 2 4

-1
.0

-0
.5

0.
0

0.
5

1.
0 A-site

P-site

E-site

Codon Offset

C
od

on
-s

pe
ci

fic
 ri

bo
so

m
e 

de
ns

ity
 v

s 
1/

tR
N

A

C

Simulations: no CHX
Simulations: with CHX

Figure S3: Relationship between cognate tRNA abundances and codon-specific ribosome densities.
(A) Correlation between codon-specific excess ribosome densities and cognate tRNA abundances
estimated using RNA-seq (Table S1). Otherwise, as in Figure 2B. (B) Correlation between codon-
specific excess ribosome densities and cognate tRNA abundances at various codon o↵sets, com-
paring results from the current dataset (flash-freeze) with those of published datasets. Published
datasets are labeled by the first author’s name: Ingolia (INGOLIA et al. 2009), Gerashchenko
(GERASHCHENKO et al. 2012), Zinshteyn (ZINSHTEYN and GILBERT 2013), McManus (MC-
MANUS et al. 2014), Artieri (ARTIERI and FRASER 2014) and Guydosh (GUYDOSH and
GREEN 2014). Otherwise, as in Figure 2B. (C) Correlation between codon-specific excess ribo-
some densities and cognate tRNA abundances in simulations with (blue) and without (red) CHX
pretreatment. Otherwise, as in Figure 2B.
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Figure S4: Analyses of ribosome stalling near polybasic tracts. (A-F) Metagene analysis of nor-
malized ribosome density surrounding polybasic tracts in six published ribosome-profiling experi-
ments. Published datasets are labeled by the first author’s name: Ingolia (INGOLIA et al. 2009),
Gerashchenko (GERASHCHENKO et al. 2012), Zinshteyn (ZINSHTEYN and GILBERT 2013),
McManus (MCMANUS et al. 2014), Artieri (ARTIERI and FRASER 2014) and Guydosh (GUY-
DOSH and GREEN 2014). Otherwise, as in Figure 3A.
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Figure S5: Whole-cell simulation of ribosome stalling near polybasic tracts. Metagene analysis of
simulated normalized ribosome-footprint density surrounding polybasic tracts. Otherwise, as in
Figure 3A.
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Figure S6: Relationship between elongation dynamics and either domain architecture or protein
secondary structure. (A) Cumulative distributions of normalized ribosome densities within and
outside of protein-folding domains, considering ORFs with at least 250 codons but ignoring the first
200 codons in each ORF. Otherwise, as in Figure 3B. (B) Cumulative distributions of normalized
ribosome densities within and outside of protein-folding domains. Domain assignments were based
on InterProScan classifications (JONES et al. 2014) using the Pfam database (BATEMAN et
al. 2002). Otherwise, as in Figure 3B. (C) Cumulative distributions of normalized ribosome
densities within the indicated classes of protein secondary structures (helices, sheets and loops).
Secondary structure assignments for proteins were obtained from (PECHMANN and FRYDMAN
2013). Otherwise, as in Figure 3B.
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Figure S8: 3’ bias observed in RNA-seq datasets. Metagene analysis of RNA-seq read density in
six published ribosome-profiling experiments. Otherwise, as in Figure 4B.
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Figure S10: The influence of mRNA enrichment methods on mRNA abundance measurements.
(A-F) Pairwise comparisons of mRNA abundances (Log10 RPKM) following mRNA enrichment
by the indicated methods. Otherwise, as in Figure 4A. For comparison, Figure 4A is repeated as
panel A.
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Figure S12: Analyses of IEs in log-phase yeast cells. (A) Relationship between TE values (TE,
Eqn. S6) and IE values (pE , Eqn. S27). (B) Distribution of IE values. Otherwise, as in Figure 5A.
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Figure S13: TE distributions from previous ribosome-profiling studies. (A-F) Distributions
of TE measurements from six published ribosome-profiling experiments. Ribosome-profiling
datasets are labeled by the first author’s name: Ingolia (INGOLIA et al. 2009), Gerashchenko
(GERASHCHENKO et al. 2012), Zinshteyn (ZINSHTEYN and GILBERT 2013), McManus (MC-
MANUS et al. 2014), Artieri (ARTIERI and FRASER 2014) and Guydosh (GUYDOSH and
GREEN 2014). Otherwise, as in Figure 5A.
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Figure S14: Influence of window length on the correlation between predicted RNA structure and
IE. Correlations between predicted RNA secondary structures near the 5’ cap (5’ cap FE) and IE
(pE , Eqn. S27), as a function of the length of the folded sequence. RNAfold was used to estimate
RNA folding energies for windows of the indicated lengths downstream of the 5’-cap.
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Figure S16: Relationship between TE and ORF length after correcting for the 3’ bias in RNA-seq
reads. (A-F) Relationship between TE and ORF length after correcting for the 3’ bias observed in
the RNA-seq reads of published ribosome-profiling experiments. For each ORF, the mRNA RPKM
was calculated based only on reads mapping to the last 200 codons. Otherwise, as in Figure S15.
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Pearson’s correlation (tRNA GCN * Wobble) tRNA abundance 
(Microarray * Wobble) tAI RiboDensity at 

A-site

tRNA abundance (RNA-
seq * Wobble) 0.748 0.608 0.713 0.268

(tRNA GCN * Wobble) 0.778 0.947 0.512

tRNA abundance 
(Microarray * Wobble) 0.713 0.459

tAI 0.509

Spearman's correlation (tRNA GCN * Wobble) tRNA abundance 
(Microarray * Wobble) tAI RiboDensity at 

A-site
tRNA abundance (RNA-

seq * Wobble) 0.777 0.605 0.752 0.319

(tRNA GCN * Wobble) 0.785 0.917 0.560

tRNA abundance 
(Microarray * Wobble) 0.711 0.463

tAI 0.532
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RPF Ingolia Gerashchenko Zinshteyn McManus Artieri Guydosh
Flash-Freeze 0.982 0.972 0.971 0.973 0.972 0.98
Ingolia 0.965 0.98 0.961 0.962 0.979

Gerashchenko 0.945 0.966 0.952 0.961
Zinshteyn 0.966 0.96 0.973
McManus 0.967 0.958
Artieri 0.971

mRNA Ingolia Gerashchenko Zinshteyn McManus Artieri Guydosh
Flash-Freeze 0.686 0.844 0.749 0.816 0.883 0.77
Ingolia 0.884 0.936 0.849 0.842 0.971

Gerashchenko 0.869 0.898 0.922 0.908
Zinshteyn 0.858 0.865 0.952
McManus 0.93 0.888
Artieri 0.886

TE Ingolia Gerashchenko Zinshteyn McManus Artieri Guydosh
Flash-Freeze 0.479 0.498 0.55 0.553 0.561 0.542
Ingolia 0.729 0.907 0.777 0.797 0.924

Gerashchenko 0.633 0.774 0.757 0.674
Zinshteyn 0.673 0.731 0.873
McManus 0.784 0.702
Artieri 0.806
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AA Codon tRNA 
(anticodon)

tRNA gene copy 
number Wobble (tRNA GCN * Wobble) tAI tRNA abundance 

(RNA-seq)
tRNA abundance (RNA-

seq * Wobble)
tRNA abundance 

(Microarray)
tRNA abundance 

(Microarray * Wobble) RiboDensity at A-site

A GCA TGC 5 1 5 0.30795 384682 384682 26087 26087 1.4224238

A GCC AGC 11 0.64 7.04 0.487685 136141.44 41927.04 0.6982879

A GCG TGC 5 0.64 3.2 0.098522 246196.48 16695.68 1.7913012

A GCT AGC 11 1 11 0.67734 212721 212721 65511 65511 0.7439787

C TGC GCA 4 1 4 0.246305 106137 106137 84453 84453 1.3124677

C TGT GCA 4 0.64 2.56 0.108128 67927.68 54049.92 0.8129126

D GAC GTC 16 1 16 0.985222 1789916 1789916 105539 105539 0.9749501

D GAT GTC 16 0.64 10.24 0.432512 1145546.24 67544.96 0.9771609

E GAA TTC 14 1 14 0.862069 1618235 1618235 121285 121285 0.9358888

E GAG CTC 2 1 2 0.399015 393379 393379 NA 8663.214286 1.3490997

F TTC GAA 10 1 10 0.615764 104391 104391 81287 81287 0.6956495

F TTT GAA 10 0.64 6.4 0.27032 66810.24 52023.68 0.686277

G GGA TCC 3 1 3 0.184729 287325 287325 61092 61092 1.5260655

G GGC GCC 16 1 16 0.985222 826342 826342 70286 70286 1.4416823

G GGG CCC 2 1 2 0.182266 129338 129338 21404 21404 1.7256386

G GGT GCC 16 0.64 10.24 0.432512 528858.88 44983.04 1.0667916

H CAC GTG 7 1 7 0.431034 727396 727396 81702 81702 0.9154641

H CAT GTG 7 0.64 4.48 0.189224 465533.44 52289.28 0.9922004

I ATA TAT 2 1 2 0.123233 54352 54352 39556 39556 1.394014

I ATC AAT 13 0.64 8.32 0.576355 586391.04 67769.6 0.7039792

I ATT AAT 13 1 13 0.800493 916236 916236 105890 105890 0.6284445

K AAA TTT 7 1 7 0.431034 222273 222273 82386 82386 0.978243

K AAG CTT 14 1 14 1 397111 397111 83036 83036 1.0943089

L CTA TAG 3 1 3 0.184729 94608 94608 63675 63675 0.9165169

L CTC GAG 1 1 1 0.061576 63503 63503 13613 13613 1.1024675

L CTG TAG 3 0.64 1.92 0.059113 60549.12 40752 1.4565058

L CTT GAG 1 0.64 0.64 0.027032 40641.92 8712.32 0.9176823

L TTA TAA 7 1 7 0.431034 271592 271592 49562 49562 0.7272969

L TTG CAA 10 1 10 0.753695 709768 709768 96605 96605 0.7904184

M ATG CAT 10 1 10 0.615764 266917 266917 67121 67121 0.8415256

N AAC GTT 10 1 10 0.615764 378101 378101 110849 110849 0.6898425

N AAT GTT 10 0.64 6.4 0.27032 241984.64 70943.36 0.7078108

P CCA TGG 10 1 10 0.615776 286531 286531 112091 112091 1.0842912

P CCC AGG 2 0.64 1.28 0.08867 36940.8 11043.84 1.3106768

P CCG TGG 10 0.64 6.4 0.197044 183379.84 71738.24 3.1205299

P CCT AGG 2 1 2 0.123153 57720 57720 17256 17256 1.0239082

Q CAA TTG 9 1 9 0.554187 436225 436225 89917 89917 0.8659004

Q CAG CTG 1 1 1 0.238916 89093 89093 NA 9990.777778 1.6325536

R AGA TCT 11 1 11 0.67734 683001 683001 98864 98864 1.1308364

R AGG CCT 1 1 1 0.278325 106890 106890 12911 12911 1.939357

R CGA ACG 6 0.61 3.66 0.000037 261137.95 36380.4 3.6442612

R CGC ACG 6 0.64 3.84 0.26601 273980.8 38169.6 1.6633606

R CGG CCG 1 1 1 0.061576 60792 60792 15330 15330 4.0202765

R CGT ACG 6 1 6 0.369458 428095 428095 59640 59640 1.0459032

S TCA TGA 3 1 3 0.184797 86913 86913 58804 58804 1.0015308

S TCC AGA 11 0.64 7.04 0.487685 507436.8 58654.72 0.7072965

S TCG CGA 1 1 1 0.12069 34793 34793 49376 49376 1.3549748

S TCT AGA 11 1 11 0.67734 792870 792870 91648 91648 0.6624122

T ACA TGT 4 1 4 0.246373 105862 105862 47598 47598 1.3252482

T ACC AGT 11 0.64 7.04 0.487685 244374.4 36396.16 0.6976534

T ACG CGT 1 1 1 0.140394 113104 113104 16861 16861 1.7572598

T ACT AGT 11 1 11 0.67734 381835 381835 56869 56869 0.692477

V GTA TAC 2 1 2 0.123239 145923 145923 33845 33845 0.9784524

V GTC AAC 14 0.64 8.96 0.62069 515950.72 56675.84 0.6841453

V GTG CAC 2 1 2 0.162562 118162 118162 44651 44651 1.2778867

V GTT AAC 14 1 14 0.862069 806173 806173 88556 88556 0.6336201

W TGG CCA 6 1 6 0.369458 298500 298500 60236 60236 1.7898831

Y TAC GTA 8 1 8 0.492611 343867 343867 91388 91388 0.9352348

Y TAT GTA 8 0.64 5.12 0.216256 220074.88 58488.32 0.8397308

Z AGC GCT 2 1 2 0.123153 249948 249948 61334 61334 1.1973314

Z AGT GCT 2 0.64 1.28 0.054064 159966.72 39253.76 0.9498069
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1 Simulation model

We use a whole-cell model of protein translation to simulate the dynamics of protein production

(Shah et al., 2013). Briefly, the model assumes a fixed total number of ribosomes and tRNAs, and

it describes how these entities initiate and elongate a fixed supply of mRNAs.

We define a genome with n = 4862 genes, each with a prescribed coding sequence, and fixed

mRNA abundance A

i

. Gene i encodes an mRNA of length L

i

codons and has a corresponding

probability of translation initiation, denoted p

i

, which is described below.

Each codon of type j is decoded by one of 41 iso-accepting tRNA species, denoted �(j), which

has a fixed total abundance T

t

�(j) in the cell. Each molecule of tRNA species �(j) is either free in

the cell, or bound, along with a ribosome, to a codon of type j on an mRNA in the cell. Thus, the

total number of tRNAs of type �(j) can be decomposed into those that are currently bound and

those that are currently free: T

t

�(j) = T

b

�(j) + T

f

�(j). Similarly, the total number of ribosomes, Rt,

can be decomposed into bound and free: Rt = R

b+R

f . Moreover, the number of bound ribosomes

always equals the total number of bound tRNAs of all species: Rb =
P41

k=1 T
b

k

.

Initiation and elongation events in the cell occur at rates that are determined by the current

state of system (the number of free ribosomes, and the locations of all bound ribosomes) and by

the underlying physical parameters of the cell. The underlying physical parameters are simply the

volume of the cell, and the characteristic lengths and di↵usion constants of ribosomes and tRNA

molecules. The time between subsequent events are exponentially distributed, and Monte Carlo

simulations proceed by incrementing time according to exponential deviates and re-computing rates

of subsequent events (Gillespie, 1977).

1.1 Di↵usion of ribosomes and tRNAs

In a cell of fixed volume, the average time required for any given molecule to move to one position,

known as the characteristic time ⌧ , is given by

⌧ =
�

2

6D
(S1)

S2
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where D is the di↵usion coe�cient of the molecule and � is its characteristic length. The character-

istic times of tRNAs and ribosomes are ⌧

t

= 4.45⇥ 10�7 s and ⌧

r

= 5⇥ 10�4 s, respectively (Shah

et al., 2013).

1.2 Translation initiation rates

Let ⇢
i

be the initiation rate at an mRNA of gene i. The rate ⇢

i

is set to zero if any of the first 10

codons of the mRNA is currently bound by a ribosome. Otherwise, the rate is

⇢

i

= p

i

R

f

⌧

r

N

r

. (S2)

The term R

f

⌧rNr
in this equation denotes the rate at which free ribosomes (Rf ) di↵use to a given

mRNA molecule. And the term p

i

denotes the probability with which a ribosome will actually

initiate translation of an mRNA molecule, once it has di↵used to its 5’ end. The parameters p

i

allow us to account for sequence-specific variation in initiation rates among genes.

1.3 Translation elongation rates

Consider a ribosome bound at codon of type j at position k on an mRNA. Its elongation rate is

set to zero if any of the following k + 10 codons of the mRNA are currently occupied by another

ribosome. Otherwise, the elongation rate depends on the number of free cognate tRNAs for that

codon T

f

�(j) and the wobble parameter associated with the tRNA-codon pair w

j

. If there is a

perfect match between the tRNA and the codon, then w

j

= 1. Else w

ry/yr

= 0.64 if the mismatch

is due to a purine-pyrimidine wobble or w

rr/yy

= 0.61 if the mismatch is due to purine-purine or

pyrimidine-pyrimidine wobble (Curran & Yarus, 1989; Lim & Curran, 2001). The elongation rate

is thus given by

T

f

�(j)wj

⌧

t

N

t

(S3)

In addition, the time spent by a ribosome in selecting the cognate tRNA depends on the relative

abundances of various competing tRNAs as well as organism specific kinetic rates associated with

S3
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ribosomal proofreading. Using the method described in (Shah et al., 2013) we estimate the average

time s spent by the ribosome in kinetic proofreading to select the correct tRNA. As a result,

accounting for tRNA competition, the actual elongation rate of a codon is

T

f

�(j)wj

s

⌧

t

N

t

(S4)

1.4 Translation termination

We assume that translation termination is an instantaneous event that occurs immediately after

elongation of the last codon at position L. Upon termination the pool of free ribosomes and

free tRNAs corresponding to the codon j

0 at position L � 1 each increases by 1 (Rf ! R

f + 1;

T

f

�(j)0 ! T

f

�(j)0 + 1) .

1.5 Estimating initiation probabilities using ribosome-profiling data

We use analytical approximation of the whole-cell simulation model (Shah et al., 2013) described

above to estimate the gene-specific probability of translation initiation once a free ribosome reaches

the 5’ end of an mRNA. The gene-specific initiation probability p

i

is given by Eqn. 27 in (Shah

et al., 2013) as follows:

p

i

⇡ R

b

i

x

A

i

L

i

✓P61
j=1

uj,i

wjT
t
�(j)

◆ (S5)

where

x =
⌧

r

N

r

s

0.15Rt

⌧

t

N

t

The term x depends on the bio-physical parameters of tRNAs, ribosomes and volume of an

yeast cell, whose values are described above. The term
R

b
i

AiLi
describes the density of ribosome on

an mRNA of gene i and is equivalent to the translation e�ciency (TE) described as:

TE =
RPF RPKM

mRNA RPKM
(S6)

S4
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Thus we estimate the gene-specific initiation probability from ribosome profiling data by plugging

in the experimentally determined TE ratios in Eqn. S5.

2 Elongation arrest by cycloheximide

In ribosome profiling experiments, ribosomes are often stabilized by addition of chemicals that

arrest elongation to prevent run-o↵s during sample preparation. Cycloheximide (CHX) is usually

the preferred elongation inhibitor (Ingolia et al., 2009; Zinshteyn & Gilbert, 2013; Brar et al., 2012;

Gerashchenko et al., 2012; Artieri & Fraser, 2014; McManus et al., 2014). However, it is unclear

whether addition of CHX biases estimates of ribosome densities on mRNAs and hence subsequently

a↵ects inferences of protein translation dynamics based on these estimates. To explore how addition

of CHX a↵ects ribosome densities, we simulate protein translation in a cell by modeling the action

of CHX.

CHX arrests ribosomes on mRNAs by binding with a tRNA in the E-site of the ribosome

(Schneider-Poetsch et al., 2010). However, the E-site of a ribosome is almost always empty except

for a short period immediately following an elongation and translocation event (Chen et al., 2011).

As a result, upon addition of CHX to the cell, a recently elongated ribosome becomes a potential

target for CHX. We model the action of CHX by assuming that whenever a ribosome elongates a

codon, there is a constant probability with which CHX binds and arrests it. Assuming that the

binding of CHX is a reversible process, we model CHX dissociation with a constant rate per bound

CHX.

We begin by first simulating protein translation in a normal cell yeast till it reaches equilibrium

(1500 sec). After this, whenever a ribosome at codon positions k of an mRNA elongates to k+1, the

ribosome is arrested at k + 1 by CHX with constant probability p

chx�on

. CHX dissociates from a

bound ribosome at with a constant rate r
chx�off

. We vary the probability of CHX-binding p

chx�on

and its dissociation rate r

chx�off

to understand its e↵ects on ribosome densities and dynamics

of protein translation. We find that when CHX acts rapidly and has a low dissociation rate

(p
chx�on

= 0.2, r
chx�off

= 0.01), we see peak excess relative ribosome-footprint density (e0
j

Eqn

S10) following the first ten codons is ⇠ 400% , which is to comparable to ramps observed in
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ribosome profiling experiments with CHX pre-treatment (Figure S2A,B) but significantly higher

than the ramp observed without CHX in both simulations (⇠ 20%) and in the current study

(⇠ 60%). This suggests that a large ramp of ribosome densities in the 5’ region is likely an artifact

of the action of CHX (Gerashchenko & Gladyshev, 2014).

3 Mapping ribosome profiling reads

The S. cerevisiae reference genome sequence and transcript models were downloaded from Ensembl

at ftp://ftp.ensembl.org/pub/release-74/fasta/saccharomyces_cerevisiae/dna/ and ftp:

//ftp.ensembl.org/pub/release-74/gtf/saccharomyces_cerevisiae/.

Data was processed using a framework written in Python. Reads were trimmed from the right

of adapter sequences according to the specific library preparations used to generate each data

set: reads from poly-adenlyated libraries were trimmed of all trailing As, and reads from li-

braries prepared with a pre-adynlyated linker (either ’CTGTAGGCACCATCAAT’ or ’TCGTAT-

GCCGTCTTCTGCTTG’) were trimmed to the first position from the left at which the next 10

bases in the read were within a hamming distance of 1 from the first 10 bases of the linker sequence

or to where a su�x of the read exactly matched a prefix of the linker sequence. For our data, 8

nt of randomized barcode sequence was trimmed from the left of each read and appended to the

read’s name. Reads originating from ribosomal RNAs were pre-filtered by mapping to an index of

yeast rRNA sequences with bowtie2 version 2.2.1. Filtered reads were then mapped to the yeast

genome and spliced transcript models using tophat2 v2.0.9. Reads mapping to any tRNA or other

noncoding RNA genes were discarded. For each annotated coding sequence, counts of the number

of uniquely mapped reads on the sense strand whose 5’-most mapped base occupied every position

from 50 nt upstream of the start codon to 50 nt downstream of the stop codon were calculated. To

calculate codon occupancies, only trimmed reads of length 28, 29 and 30 (for which the identity of

the codon occupying the A-site of the ribosome could be most reliably inferred) were used. Reads

of length 28 and 29 were assigned to the codon at position +14, 15, or 16 from the start of the

read, and reads of length 30 were assigned to the codon at position +15, 16, or 17. To calculate

read densities, reads of all lengths were included.
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Data sources: (GSE* indicates GEO accession number)

Flash-freeze: GSE53313

Ingolia (Science): GSE13750 (Ingolia et al., 2009)

Zinshteyn: GSE45366 (Zinshteyn & Gilbert, 2013)

Gerashchenko: personal communication with Maxim Gerashchenko (Gerashchenko et al., 2012)

Artieri: GSE50049 (Artieri & Fraser, 2014)

Mcmanus: GSE52119 (McManus et al., 2014)

Guydosh: GSE52968 (Guydosh & Green, 2014)

4 Metagene analyses of ribosome and mRNA densities

To understand how ribosome and mRNA densities vary along the length of a transcript, we estimate

position-specific ribosome densities of individual genes into a composite metagene. Let x
i,j

be the

number of mapped RPF reads to position j of gene i based on its A-site. In order to avoid biases

induced due genes with low coverage of reads, we restricted our analyses to genes with at least 128

mapped total mapped reads. To account for di↵erences in initiation rates between di↵erent genes,

we calculate the normalized ribosome density z

i,j

at codon position j by normalizing the mapped

reads at that codon by the mean number of mapped reads in that gene.

z

i,j

=
x

i,j

(
P

Li
j=1 xi,j)/Li

(S7)

L

i

= Length of gene i in codons

We calculate the excess ribosome densities e
j

at a particular position j by averaging the normalized

ribosome density z

i,j

across all genes whose length is at least j (L
i

<= j).
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e

j

=

P
N

i=1 zi,jP
N

i=1 �i(j)
(S8)

�

i

(j) =

8
>><

>>:

1 if L
i

� j

0 if L
i

< j

(S9)

N = Number of genes

The amount of excess ribosome densities e

j

at the 5’ ends of genes vary with each dataset.

As a result, the excess ribosome densities asymptote at di↵erent values depending on the dataset,

making it harder to compare the peaks of ribosome densities across datasets. To account for these

di↵erences, we estimated relative excess densities e

0
j

by normalizing excess ribosome-densities e

j

with excess ribosome densities in the region spanning 450 and 500 codons. This region was chosen

based on the observation that excess ribosome densities in all ribosome profiling dataset reach an

asymptote around 450-500 codons. The relative excess ribosome densities e

0
j

were calculated as

follows:

e

0
j

=
e

j

(
P500

j=450 ej)/51
(S10)

We report peak excess ribosome densities as the maximum of e0
j

in a region spanning 10 to 500

codons. We ignore the first few codons as they are highly variable and result in sharp peaks due

to continued initiation events.

We calculate excess mRNA reads at codon position j similar to excess RPF reads described

above. Let y

i,j

be the number of mapped mRNA reads to position j of gene i. The normalized

mRNA density at g
i,j

at codon position j by normalizing the mapped reads at that codon by the

mean number of mapped reads in that gene.

g

i,j

=
y

i,j

(
P

Li
j=1 yi,j)/Li

(S11)

S8

peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/021501doi: bioRxiv preprint first posted online Jun. 26, 2015; 

http://dx.doi.org/10.1101/021501


We calculate the excess mRNA densities h
j

at a particular position j by averaging the normal-

ized mRNA density g

i,j

across all genes whose length is at least j (L
i

<= j).

h

j

=

P
N

i=1 gi,jP
N

i=1 �i(j)
(S12)

�

i

(j) =

8
>><

>>:

1 if L
i

� j

0 if L
i

< j

(S13)

The relative excess mRNA densities h0
j

based on 450-500 codons were calculated as follows:

h

0
j

=
h

j

(
P500

j=450 hj)/51
(S14)

To estimate the degree of bias in mRNA measurements in the 3’ ends of genes, we scale excess

mRNA densities at a codon j by 450-500 codons from the stop codon as follows:

h

00
j

=
h

j

(
P

Lm�500
j=Lm�450 hj)/51

(S15)

L

m

= Max length of genes

5 Comparing 5’ and 3’ codon-specific ribosome densities

To estimate codon-specific ribosome densities in the 5’ and 3’ ends of genes, we begin by first

calculating normalized ribosome densities within a gene z

i,j

(Eqn. S7) for all genes with at least

250 codons. Normalizing ribosome-densities within a gene removes the e↵ect of di↵erences in

initiation rates among genes when comparing normalized reads across many genes. The average

ribosome density of all ribosome reads at codon type k in the 5’ (v5
0

k

) and 3’ (v3
0

k

) ends across the

genome is then given by
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v

50
k

=

P
N

i=1

P200
j=18c(i,j)=k

z

i,j

P
N

i=1 n
50
i,k

(S16)

v

30
k

=

P
N

i=1

P
Li
j=2018c(i,j)=k

z

i,j

P
N

i=1 n
30
i,k

(S17)

n

50
i,k

= Number of codons of type k in gene i in codons 1  j  200

n

30
i,k

= Number of codons of type k in gene i in codons 201  j  L

i

c(i, j) = Identity of codon at position j of gene i

6 Estimating codon-specific elongation times

Most theoretical studies of protein translation assume a negative relationship between the elonga-

tion time of a codon and its tRNA abundance. To test this, we estimate codon-specific elongation

times from ribosome densities as follows:

In order to avoid the confounding e↵ects of 5’ ribosomal ramp on our estimates of codon-specific

ribosome densities, we restrict our analyses to genes with at least 250 codons and only consider

RPF reads mapped from codon position 200 onwards. Let x

i,j

be the number of mapped RPF

reads to position j of gene i. The normalized ribosome density z

0
i,j

at codon position j >= 200 is

given by normalizing the mapped reads at that codon by the mean number of mapped reads from

codon position 200 to L

i

.

z

0
i,j

=

8
>><

>>:

xi,j

(
PLi

j=200 xi,j)/(Li�199)
if j � 200

NA if j < 200

(S18)

Normalizing ribosome-densities within a gene removes the e↵ect of di↵erences in initiation rates

among genes when comparing normalized reads across many genes. The average ribosome density
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of all ribosome reads at codon type k (v
k

) across the genome is then given by

v

k

=

P
N

i=1

P
Li
j=2008c(i,j)=k

z

0
i,j

P
N

i=1 ni,k

(S19)

n

i,k

= Number of codons of type k in gene i in codons 200  j  L

i

c(i, j) = Identity of codon at position j of gene i

The expected elongation time of a codon is then directly proportional to average codon-specific

ribosome density, v
k

because codons with longer elongation times have higher average ribosome

densities.

7 Estimating protein synthesis rates

We estimate protein synthesis rates of individual genes using the densities of ribosomes on their

mRNAs. However, the ribosome densities per mRNA as estimated by taking ratios of RPF RPKM

and mRNA RPKM are likely biased. The main source of this bias is the presence of a 5’ ramp of

RPF reads that varies with position along a transcript.

7.1 Ramp correction factor

In order to obtain unbiased estimates of gene-specific ribosome-densities, we apply a position-

dependent correction factor to RPF reads that accounts for the ramp. However, the observed ramp

of ribosome densities is partly a result of codon ordering within genes in addition to experimental

artifacts. Our position-dependent correction factor accounts for the ribosomal ramp due to ex-

perimental artifacts by explicitly taking into account the contribution of codon usage dependent

ramp.

The total excess ribosome density at a position j across all gene is given by e

j

(see above,

Eqn. S8). To calculate the expected excess ribosome density at a position j due to codon ordering

within a gene, we first calculate average ribosome density for codon k, v

k

as described above

(Eqn. S19). The expected excess ribosome density d

j

at position j due to patterns of codon usage
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is given as follows:

The relative codon-usage expected ribosome density q

i,j

at position j of gene i is given by

normalizing the expected ribosome density v

c(i,j) at that codon by the mean expected ribosome

density for that gene.

q

i,j

=
v

c(i,j)

(
P

Li
j=1 vc(i,j))/Li

(S20)

L

i

= Length of gene i in codons

c(i, j) = Identity of codon at position j of gene i

The average codon-usage expected ribosome density at position j (d
j

) across the genome is then

given by

d

j

=

P
N

i=1 qi,jP
N

i=1 �i(j)
(S21)

�

i

(j) =

8
>><

>>:

1 if L
i

� j

0 if L
i

< j

(S22)

The ramp correction factor f

j

at position j along any gene is then defined as the ratio of

observed ramp e

j

over the expected ramp d

j

.

f

j

=
e

j

d

j

(S23)

7.2 Unbiased estimate of ribosome density per mRNA

Let x
i,j

be the number of mapped RPF reads and y

i,j

be the number of mapped mRNA reads to

position j of gene i. The unbiased estimate of ribosome density r

i

per mRNA for gene i is defined

as

Mean corrected RPF reads =

P
Li
j=1

xi,j

fj

L

i

(S24)
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Mean mRNA reads =

P
Li
j=1 yi,j

L

i

(S25)

r

i

=
Mean corrected RPF reads

Mean mRNA reads

=

P
Li
j=1

xi,j

fjP
Li
j=1 yi,j

(S26)

where f

j

is the ramp correction factor (see above, Eqn. S23).

7.3 Initiation e�ciency

We estimate initiation e�ciency of a genes using the analytic approximations for the initiation

probability p

i

based on steady-state behavior of a whole cell simulation described above (Eqn. S5).

p

i

⇡ R

b

i

x

A

i

L

i

✓P61
j=1

uj,i

wjT
t
�(j)

◆

where

x =
⌧

r

N

r

s

0.15Rt

⌧

t

N

t

see Methods (1. Simulation model section) above for details on parameter notations and values.

R

b
i

AiLi
describes the ribosome density per mRNA on gene i. Here we substitute

R

b
i

AiLi
with unbi-

ased estimates of ribosome density per mRNA r

i

(Eqn. S26) in Eqn. S5. Moreover, estimates of

codon-specific ribosome densities v
k

(Eqn. S19) reflect average elongation times of codons – codons

with longer elongation times have higher ribosome densities. Therefore, we substitute expected

elongation time of a codon given by 1
wjT

t
�(j)

in Eqn. S5 with estimates of codon-specific ribosome

densities v

k

. As a result, our initiation e�ciency p

E

i

for gene i is estimated solely from ribosome

profiling data and is defined as

p

E

i

⇡ r

i

xG

P61
j=1 uj,ivk

(S27)

where G is the global scaling parameter, which scales r

i

such that the total number of ribosomes

within a cell are 200, 000, total number of mRNAs are 60, 000 and total number of tRNAs are

S13

peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/021501doi: bioRxiv preprint first posted online Jun. 26, 2015; 

http://dx.doi.org/10.1101/021501


3, 300, 000 based on empirical estimates (Shah et al., 2013).

7.4 Protein synthesis rates

Protein synthesis rate S

i

of a gene i within a cell depend on total number of mRNAs for that gene

(A
i

) and initiation rate per mRNA (⇢
i

Eqn. S2) and the number of free ribosomes. Here we modify

Eqn. S2) by substituting initiation probabilities (p
i

) with estimates of initiation e�ciencies (pE
i

)

based on profiling data (Eqn. S27).

S

i

= p

E

i

A

i

R

f

⌧

r

N

r

(S28)

In estimating S

i

, we assume that 15% of the total 200,000 ribosomes are free and the rest are bound

to mRNAs, such that R

f = 3 ⇥ 104. Furthermore, we scale mRNA abundances as measured by

mRNA RPKM such that the total number of mRNAs are 60,000 (
P

i

A

i

= 6⇥ 104).

8 Co-translational folding and inter-domain linkers

During protein translation, a growing polypeptide chain begins to fold as soon as it emerges from

the ribosome - a process known as co-translational folding. Several studies have suggested that

pausing of ribosome at specific instances is necessary for the nascent polypeptide to take native-like

folds (Kimchi-Sarfaty et al., 2007; Pechmann & Frydman, 2013). If ribosomal pausing significantly

a↵ects co-translation folding, then we expect a higher density of ribosomes in regions between

protein domains. To test this, we downloaded domain assignments for individual genes in the

S. cerevisiae genome from SGD – http://downloads.yeastgenome.org/curation/calculated_

protein_info/domains/domains.tab based on InterProScan http://www.ebi.ac.uk/interpro

on Jan 14, 2014. Domain assignments were based on InterProScan classifications (Jones et al.,

2014) obtained from the Superfamily database (Wilson et al., 2009) and Pfam database.
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9 Regression model

Initiation e�ciency (pE) of a gene depends on several features of a coding sequence. In order to

identify a set of features that explain the most variation in p

E , we use the multiple regression

framework in R (R Core Team, 2012). We regressed the p

E of a gene against its length, mRNA

abundance (RPKM), 5’ UTR length and its GC content, 5’ cap folding energy, and number of

upstream ATGs in 5’ UTR (uATG). We restricted the analyses to 2549 genes with experimentally

verified 5’ UTR lengths and number of upstream ATGs (Arribere & Gilbert, 2013). To estimate

5’ cap folding energy we used sequences of length 70 nts from the 5’ end of the mRNA transcript

as sequences of these lengths showed the highest correlation with TE ratios (Figure S14). We

calculated the folding energies using RNAfold algorithm from Vienna RNA package (Hofacker

et al., 1994) at 37 �C. The values of pE , mRNA RPKM and protein length were log-transformed

in the regression model.

To identify which features explain the highest amount of variation in initiation e�ciencies, we

used Akaike’s Information Criteria (AIC) for model selection. We performed both step-up and step-

down model selection using the stepAIC function in MASS package in R. We find that the multiple

regression model that best explains the variation in p

E even after penalizing for model complexity

includes all the 6 variables considered (Table S3). This model explains ⇠ 58% of variation in p

E

across all the genes considered. We find that initiation e�ciencies scale positively with predicted

folding energies and mRNA abundances. This indicates that genes with weaker 5’ cap structure

and RNA structure around the start site have higher rates of initiation. In contrast, genes with a

higher number of uATGs and longer 5’ UTRs and coding sequence length have lower pE . Moreover,

genes that have higher mRNA abundances also tend to have higher pE and hence higher ribosome

densities (TE) on them. This suggests that genes under selection for higher protein abundances

are selected both at the level of transcription – leading to higher mRNA abundances and at the

translation level – leading to higher ribosome densities.
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