67 research outputs found

    Natural Selection of Paths in Networks

    Get PDF
    We present a novel algorithm that exhibits natural selection of paths in a network. If each node and weighted directed edge has a unique identifier, a path in the network is defined as an ordered list of these unique identifiers. We take a population perspective and view each path as a genotype. If each node has a node phenotype then a path phenotype is defined as the list of node phenotypes in order of traversal. We show that given appropriate path traversal, weight change and structural plasticity rules, a path is a unit of evolution because it can exhibit multiplicative growth (i.e. change it’s probability of being traversed), and have variation and heredity. Thus, a unit of evolution need not be a spatially distinct physical individual. The total set of paths in a network consists of all possible paths from the start node to a finish node. Each path phenotype is associated with a reward that determines whether the edges of that path will be multiplicatively strengthened (or weakened). A pair-wise tournament selection algorithm is implemented which compares the reward obtained by two paths. The directed edges of the winning path are strengthened, whilst the directed edges of the losing path are weakened. Edges shared by both paths are not changed (or weakened if diversity is desired). Each time a node is activated there is a probability that the path will mutate, i.e. find an alternative route that bypasses that node. This generates the potential for a novel but correlated path with a novel but correlated phenotype. By this process the more frequently traversed paths are responsible for most of the exploration. Nodes that are inactive for some period of time are lost (which is equivalent to connections to and from them being broken). This network-based natural selection compares favourably with a standard pair-wise tournament-selection based genetic algorithm on a range of combinatorial optimization problems and continuous parametric optimization problems. The network also exhibits memory of past selective environments and can store previously discovered characters for reuse in later optimization tasks. The pathway evolution algorithm has several possible implementations and permits natural selection with unlimited heredity without template replication

    Active shape discrimination with compliant bodies as reservoir computers

    Get PDF
    Compliant bodies with complex dynamics can be used both to simplify control problems and to lead to adaptive reflexive behavior when engaged with the environment in the sensorimotor loop. By revisiting an experiment introduced by Beer and replacing the continuous-time recurrent neural network therein with reservoir computing networks abstracted from compliant bodies, we demonstrate that adaptive behavior can be produced by an agent in which the body is the main computational locus. We show that bodies with complex dynamics are capable of integrating, storing, and processing information in meaningful and useful ways, and furthermore that with the addition of the simplest of nervous systems such bodies can generate behavior that could equally be described as reflexive or minimally cognitive

    Modeling co-operative volume signaling in a plexus of nitric oxide synthase-expressing neurons

    Get PDF
    In vertebrate and invertebrate brains, nitric oxide (NO) synthase (NOS) is frequently expressed in extensive meshworks (plexuses) of exceedingly fine fibers. In this paper, we investigate the functional implications of this morphology by modeling NO diffusion in fiber systems of varying fineness and dispersal. Because size severely limits the signaling ability of an NO-producing fiber, the predominance of fine fibers seems paradoxical. Our modeling reveals, however, that cooperation between many fibers of low individual efficacy can generate an extensive and strong volume signal. Importantly, the signal produced by such a system of cooperating dispersed fibers is significantly more homogeneous in both space and time than that produced by fewer larger sources. Signals generated by plexuses of fine fibers are also better centered on the active region and less dependent on their particular branching morphology. We conclude that an ultrafine plexus is configured to target a volume of the brain with a homogeneous volume signal. Moreover, by translating only persistent regional activity into an effective NO volume signal, dispersed sources integrate neural activity over both space and time. In the mammalian cerebral cortex, for example, the NOS plexus would preferentially translate persistent regional increases in neural activity into a signal that targets blood vessels residing in the same region of the cortex, resulting in an increased regional blood flow. We propose that the fineness-dependent properties of volume signals may in part account for the presence of similar NOS plexus morphologies in distantly related animals

    An integrated approach to process planning and scheduling using genetic algorithms

    Get PDF
    Centre for Intelligent Systems and their ApplicationsThis thesis presents a new integrated approach to process planning aad job-shop scheduling. The relationship between planning and scheduling is reassessed and the line between the two tasks is made significantly more blurred than in the usual treatment. Scheduling is traditionally seen as the task of finding an optimal way of interleaving a number of fixed plans which are to be executed concurrently and which must share resources. The implicit assumption is that once planning has finished scheduling takes over. In fact there are often many possible choices for the sub-operations in the plans. Very often the real optimisation problem is to simultaaeously optimise all the individual plans alzd the overall schedule. This thesis describes how manufa.cturing planning has been recast to allow solutions to the simultaneous plan and schedule optimisation problem, a problem traditionally considered too hard to tackle at all. A model based on simulated coevolution is developed and it is shown how complex interactions are handled in an emergent way. Results from various implementations are reported. Underlying this new approach is a feature based process planning system that is used to generate the space of all possible legal process plans for a given component. This space is then searched, in parallel with spaces for all other components, using an advanced form of genetic algorithm. The thesis describes the development of the ideas behind this technique and presents in detail the constituent parts of the whole system

    Simulating soft-bodied swimmers with particle-based physics

    Get PDF
    In swimming virtual creatures, there is often a disparity between the level of detail in simulating a swimmer’s body and that of the fluid it moves in. In order to address this disparity, we have developed a new approach to modelling swimming virtual creatures using pseudo-soft bodies and particle-based fluids, which has sufficient realism to investigate a larger range of body-environment interactions than are usually included. As this comes with increased computational costs, which may be severe, we have also developed a means of reducing the volume of fluid that must be simulated

    Introduction

    Get PDF
    May you live in interesting times, runs the legendary Chinese curese. These are interesting times: almost anything can happen except a return to the delicate but enduring balance between two blocs that marked international relations for nearly half a century after World War II. The possibilities include nuclear war, not in the form of the long-feared mutual destruction of the Soviet Union and the United States, but as a last resort in the course of escalating regional conflicts in the Middle East or South Asia. In the aftermath of the 1991 Gulf War, United Nations inspectors found evidence of strong steps toward the production of nuclear weapons in Iraq, a country whose leaders did not hesitate to rain missiles on noncombatant Israel during their struggle to hold Kuwait; the same science is available to many other small, rich despots throughout the world. While the chances that two of the world\u27s largest countries would annihilate each other simultaneously have surely receded, the risk of nuclear war has by no means vanished

    Opioid receptors in GtoPdb v.2021.3

    Get PDF
    Opioid and opioid-like receptors are activated by a variety of endogenous peptides including [Met]enkephalin (met), [Leu]enkephalin (leu), β-endorphin (β-end), α-neodynorphin, dynorphin A (dynA), dynorphin B (dynB), big dynorphin (Big dyn), nociceptin/orphanin FQ (N/OFQ); endomorphin-1 and endomorphin-2 are also potential endogenous peptides. The Greek letter nomenclature for the opioid receptors, μ, δ and κ, is well established, and NC-IUPHAR considers this nomenclature appropriate, along with the symbols spelled out (mu, delta, and kappa), and the acronyms, MOP, DOP, and KOP. [121, 100, 91]. The human N/OFQ receptor, NOP, is considered 'opioid-related' rather than opioid because, while it exhibits a high degree of structural homology with the conventional opioid receptors [294], it displays a distinct pharmacology. Currently there are numerous clinically used drugs, such as morphine and many other opioid analgesics, as well as antagonists such as naloxone, however only for the μ receptor

    Opioid receptors in GtoPdb v.2023.1

    Get PDF
    Opioid and opioid-like receptors are activated by a variety of endogenous peptides including [Met]enkephalin (met), [Leu]enkephalin (leu), β-endorphin (β-end), α-neodynorphin, dynorphin A (dynA), dynorphin B (dynB), big dynorphin (Big dyn), nociceptin/orphanin FQ (N/OFQ); endomorphin-1 and endomorphin-2 are also potential endogenous peptides. The Greek letter nomenclature for the opioid receptors, μ, δ and κ, is well established, and NC-IUPHAR considers this nomenclature appropriate, along with the symbols spelled out (mu, delta, and kappa), and the acronyms, MOP, DOP, and KOP [124, 101, 92]. However the acronyms MOR, DOR and KOR are still widely used in the literature. The human N/OFQ receptor, NOP, is considered 'opioid-related' rather than opioid because, while it exhibits a high degree of structural homology with the conventional opioid receptors [304], it displays a distinct pharmacology. Currently there are numerous clinically used drugs, such as morphine and many other opioid analgesics, as well as antagonists such as naloxone. The majority of clinically used opiates are relatively selective μ agonists or partial agonists, though there are some μ/κ compounds, such as butorphanol, in clinical use. κ opioid agonists, such as the alkaloid nalfurafine and the peripherally acting peptide difelikefalin, are in clinical use for itch

    Opioid receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Opioid and opioid-like receptors are activated by a variety of endogenous peptides including [Met]enkephalin (met), [Leu]enkephalin (leu), β-endorphin (β-end), α-neodynorphin, dynorphin A (dynA), dynorphin B (dynB), big dynorphin (Big dyn), nociceptin/orphanin FQ (N/OFQ); endomorphin-1 and endomorphin-2 are also potential endogenous peptides. The Greek letter nomenclature for the opioid receptors, μ, δ and κ, is well established, and NC-IUPHAR considers this nomenclature appropriate, along with the symbols spelled out (mu, delta, and kappa), and the acronyms, MOP, DOP, and KOP. [116, 96, 88]. The human N/OFQ receptor, NOP, is considered 'opioid-related' rather than opioid because, while it exhibits a high degree of structural homology with the conventional opioid receptors [282], it displays a distinct pharmacology. Currently there are numerous clinically used drugs, such as morphine and many other opioid analgesics, as well as antagonists such as naloxone, however only for the μ receptor

    Genetic Algorithms for Scheduling

    No full text
    This paper provides a survey of the application of genetic algorithms (GAs) to scheduling. Although it focuses on manufacturing scheduling, particularly job-shop problems, it does outline work in other areas such as transport scheduling and network routing. GA research in closely related problems, such as bin packing and the TSP, are also covered. Finally, it is shown how distributed parallel GAs may allow practically beneficial recharacterisations of highly complex general scheduling problems. 1 Introduction Practical scheduling problems are numerous and varied. However, many of them share two important characteristics --- they are very difficult, and good quality solutions bring highly tangible benefits. In general, scheduling problems are NP-hard [37], consequently there are no known algorithms guaranteed to give an optimal solution and run in polynomial time. This has lead to a long line of techniques emanating from the fields of AI and OR that provide approximate solutions to fai..
    • …
    corecore