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Abstract 

We  present  a  novel  algorithm  that  exhibits  natural  selection  of  paths  in  a 

network. If each node and weighted directed edge has a unique identifier, a path 

in the network is defined as an ordered list of these unique identifiers. We take a 

population perspective and view each path as a genotype. If each node has a node 

phenotype then a path phenotype is defined as the list of node phenotypes in 

order  of  traversal.  We  show  that  given  appropriate  path  traversal,  weight 

change and structural plasticity rules, a path is a unit of evolution because it can 

exhibit multiplicative growth (i.e. change it’s probability of being traversed), and 

have variation and heredity. Thus, a unit of evolution need not be a spatially 

distinct physical individual. The total set of paths in a network consists of all  

possible  paths  from the start  node  to  a  finish  node.  Each path  phenotype  is 

associated with a reward that determines whether the edges of that path will be 

multiplicatively strengthened (or weakened). A pair-wise tournament selection 

algorithm is implemented which compares the reward obtained by two paths. 

The directed edges  of  the winning path are  strengthened,  whilst  the directed 

edges  of  the  losing path  are  weakened.  Edges  shared  by both  paths  are  not 

changed (or weakened if diversity is desired). Each time a node is activated there 

is  a  probability  that  the  path  will  mutate,  i.e.  find an alternative  route  that 

bypasses that node. This generates the potential for a novel but correlated path 

with  a  novel  but  correlated  phenotype.  By  this  process  the  more  frequently 

traversed  paths  are  responsible  for  most  of  the  exploration.  Nodes  that  are 

inactive for some period of time are lost (which is equivalent to connections to 
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and from them being broken). This network-based natural selection compares 

favourably  with  a  standard  pair-wise  tournament-selection  based  genetic 

algorithm on a range of combinatorial  optimization problems and continuous 

parametric optimization problems. The network also exhibits memory of past 

selective environments and can store previously discovered characters for reuse 

in later optimization tasks. The pathway evolution algorithm has several possible 

implementations and permits natural selection with unlimited heredity without 

template replication.  

Introduction 

Units of evolution  (Maynard Smith,  1986) at the same level  of selection  (Okasha, 

2006) are  generally  considered  to  be  discrete  non-overlapping  individuals,  for 

example,  living organisms, B-cells  undergoing somatic selection,  ribozymes in the 

RNA world,  and binary strings in a genetic algorithm. A unit  of evolution is  any 

entity that has multiplication, variation and heredity. If units have differential fitness 

they  can  evolve  by  natural  selection.  The  mechanism  by  which  the  above  units 

maintain  unlimited  heredity  depends  on  template  replication;  in  the  language  of 

networks, this involves a new node and edge being formed for each node and edge of 

the  parent  by  formation  of  a  topographic  correspondence  with  the  original 

(Szathmáry,  2006).  The  fundamental  process  of  natural  selection  with  template 

replication is shown in Figure 1. It was template replication based natural selection 

that inspired John Holland’s genetic algorithm (Holland, 1975).   

This paper proposes an alternative mechanism by which adaptations can arise and  

increase in frequency in a population by natural selection, in the absence of template  

replication. It  is  based  on  the  idea  that  natural  selection  need  not  act  between 

physically independent individuals as shown in Figure 1. Instead, natural selection 

can act on paths in a directed graph, e.g. in a neuronal network, if the covariance 

between the phenotype of that path and the fitness of that path is not outweighed by 

transmission bias  due to mutational  exploration,  and environmental  change  (Price, 

1970). The number of possible paths in a network can be far greater than the number 

of  nodes  or  edges  because  each  node  and  edge  can  be  part  of  many  pathways 

(Izhikevich, 2006). The number of path phenotypes is less than (and rarely equal to) 
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the number of paths. 

Figure 1. One generation of natural selection by template replication. At time t 

the population consists of 4 individuals with two phenotypes b1 = 0101 and b2 = 0111. 

The frequency of these phenotypes is  q1 =  3 and  q1 =  1. One generation involves 

template replication (possibly with mutation not shown) and removal of individuals to 

maintain the same population size. In the above diagram, this results in the same two 

phenotypes but with different frequencies q1 = 2 and q2 =2 respectively.  The fact that 

phenotypic traits covary with fitness causes fitter traits to increase in the population 

(Price, 1970). 

Let us consider some examples. Figure 2 shows two networks on the left, and all the 

paths  they contain on the right.  The top network contains  two paths,  each with a 

distinct  phenotype.  The  pink  path  has  phenotype  0101  and  the  green  path  has 

phenotype 0111. Unfilled circles represent nodes with node phenotype 0, and filled 

circles  represented  nodes  with  node phenotype  1.  The  network  on the  bottom of 

Figure 2 contains four paths, shown on the right. Three of the paths have the same 

phenotype (pink, 0101) and one path has phenotype 0111 (green). 
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Figure 2. Two networks and the paths they contain. Paths with phenotype 0101 are 

shown  in  pink.  Paths  with  phenotype  0111  are  shown  in  green.  The  transition 

probabilities associated with each edge are marked. 

Path Traversal 

Note that each directed edge is associated with a weight between zero and one. The 

sum of weighs out of one node is always normalized to one after any weight change. 

Weights correspond to transition probabilities (weights) Pij and are used to determine 

the frequency of a path. The probability of traversal (or in other words, the frequency) 

of that path is the product of the weights Pij along that path. A node can be active or 

inactive.  To  generate  a  path,  the  start  node  is  activated,  and  all  other  nodes  are 

inactivated.  In  one  time-step,  the  active  node  will  then  cause  activation  of  one 

downstream node, chosen by roulette wheel selection over the outflow weights to all 

downstream nodes of the active node. The original active node is then inactivated. 

Therefore,  at  any one time,  only one node is  active  in  the network.  This process 

iterates  until  the finish node becomes activated,  at  which point  the path has been 
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generated.  

Given this probabilistic traversal scheme, it is easy to see that both networks at the top 

and bottom of Figure 2 have the same relative frequency of phenotypes as at time  t in 

the  traditional  template  based  natural  selection  scheme  shown  in  Figure  1.  Each 

phenotype  b,  e.g.  0101,  we  will  index  with  i,  giving  bi. Each  phenotype  bi has 

frequency qi. The frequency qi of a phenotype is defined as the sum of the frequencies 

of paths with that phenotype bi. The frequency of an individual path is the proportion 

of times that that particular path is traversed when the start node is stimulated. Note 

that  the  fact  that  two  different  networks  can  produce  the  same  frequency  of 

phenotypes (as in the top and bottom networks in Figure 2) means there is a redundant 

(many-to-one)  encoding  of  phenotypes  by  paths,  and  this  may  permit  non-trivial 

neutrality  (Toussaint, 2003), i.e. the probability distribution of phenotypes reachable 

by single mutations of paths may differ depending on the underlying configuration of 

paths that generated them.  

Paths are Units of Evolution 

Paths exhibit multiplicative growth. The increase or decrease of the frequency of a 

path  occurs  because  there  is  strengthening  (or  weakening)  of  the  transition 

probabilities  Pij along a path. Whether there is strengthening or weakening of these 

transition  probabilities  depends  on  the  reward  obtained  by  a  path.  Multiplicative 

growth of paths is necessary for them to be units of evolution. 

Paths exhibit variation. Variation exists because each path can have a distinct path 

phenotype caused by the order  of  node phenotypes  along that  path.  Paths  exhibit 

heredity by two mechanisms. Firstly, when a path undergoes multiplicative growth by 

increasing  Pij along that  path,  i.e.  when its  frequency increases,  this results  in the 

increase of the frequency  qi of its associated phenotype  bi in the population of path 

phenotypes.  Secondly,  when  a  path  mutates  (to  be  described  later)  correlated 

variability exists because a new path phenotype, whilst not identical to the parental 

path phenotype, will still resemble the parent’s path phenotype because a mutant path 

is always a short bypass of the parental path and therefore overlaps with much of the 

parental  path,  i.e.  like  begets  like.  Correlated  variability  was  shown  to  be  a 
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fundamental requirement for evolvability that was lacking in a previous proposal of 

an  alternative  to  template  replication  due  to  compositional  inheritance  (Vasas, 

Szathmáry, & Santos, 2010). Hereditary variation of paths is necessary for them to be 

units of evolution. 

Node Mutations

The mechanism of pathway mutation is shown in Figure 3A. This shows on the left a 

mutation of the first node of the network shown at the top of Figure 2. Mutants occur 

with a certain probability, µ, each time a node is activated. A node mutation involves 

creating a new node at the same layer (drawn in the figures above or below the parent 

node). The new node has weak initial connection strength from the node that activated 

the parent node, and a connection of strength 1 to the node that was activated by the 

parent node. This preserves the original paths, yet creates new alternative paths. The 

path  phenotypes  of  the  alternative  pathways  will  be  correlated  with  the  path 

phenotypes of the paths that contain the node that underwent a mutation. Initially the 

alternative paths are traversed with low probability, in other words the frequency qi
m 

of a mutant path phenotype bi
m in a population of path phenotypes will be low, if that 

path  phenotype  did  not  previously  exist  in  the  population.  Note  that  this  kind  of 

mutation could not occur in the population shown in Figure 1. Because a node can be 

involved in many paths each having different path phenotypes, a single node mutation 

can change the frequency of many path phenotypes at the same time. This is one of 

the  features  that  distinguish  the  path  evolution  algorithm from a standard  genetic 

algorithm. 

Path Crossover

Path crossover occurs with probability χ whenever two distinct paths differ in reward, 

see Figure 3B. A weak weight is formed from a random layer in the loosing path to 

the next layer in the winning path. Another weak weight is formed from a random 

layer (after the first point of crossover) in the winning path to the next layer in the 

losing path.  Thus,  this  is a two-point crossover that  creates  a new weak path that 

consists of part of the loosing path and part of the winning path.  
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Figure 3 (Part A) A single mutation to the network in Figure 2 produces two new 

paths and two new path phenotypes (Right). (Part B) 2-point crossover between 

a winning path (green) and a losing path (red).  

Evolutionary Dynamics of Paths in Fixed Networks

Let us consider the evolutionary dynamics over one generation of the simple network 

at the top of Figure 2. The frequency of the pink path is also the frequency of the path 

phenotype  b1 = 0101, namely  q1  = 0.25, because only one path has that phenotype. 
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The frequency of the path phenotype b2 = 0111 is q2 =0.75, and is the frequency of 

the green path. For more complex networks the frequency of a path phenotype will be 

the sum of the probability of taking all paths with that phenotype. Now we have the 

frequencies of phenotypes in the ancestor generation at time t. Let us assume that b1  

has  reward  r1 =2  and  b2  has  reward  r2 =3.  Ignoring  mutation  for  now,  let  one 

generation consist of choosing two paths. Each path is generated according to the 

roulette  wheel  traversal  method  described  previously.  From  these  two  paths  the 

winning path is chosen as the path with the highest reward associated with it.  The 

probability of choosing path 1 twice is P(1,1) = (0.75)2.  The probability of choosing 

path 1 and path 2 is P(1,2) + P(2,1) = 2(0.75)0.25 . The probability of choosing path 2 

twice is P(2,2) = 0.252.  Only when different paths (with distinct path characters) are 

chosen  is  a  winner  and  looser  defined.  Therefore,  with  probability  0.375  per 

generation,  path  2  will  be  chosen  as  the  winner  and  path  1  as  the  looser.   The 

transition probabilities Pij are then modified as follows. The edges along the winning 

path (not shared by the losing path) will be strengthened according to the following 

rule… 

� 

∆Pij = (1+ l )Pij …(1)

and the edges along the losing path (not shared by the winning path) will be weakened 

according to the following rule…

� 

∆Pij = (1- l )Pij …(2)

for the losing path,  followed by normalization over each set  of outflow edges for 

which weights were changed. Specifically, if  λ = 0.1 then the weight of the edge to 

path 1 will decrease from 0.75 to 0.75 x 0.9 and the weight on the edge to path 2 will  

increase  by  0.25  x  1.1,  which  after  normalization  gives  values  new  transition 

probabilities 0.71 and 0.29 respectively. By this learning rule the path character with 

the higher reward increases in the population and the path character with the lower 

reward decreases. 

Let us consider a more general formulation of the above dynamics. Supplementary 

Material  contains a Mathematica file that shows a deterministic model constructed 
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with dynamical equations that captures the essence of natural selection in these path-

based systems. A path is a genotype. A node on a path is an allele. A locus consists of 

all nodes on paths a certain distance away from the start node (i.e. in the same layer). 

The frequency of a path is the probability that activity passes along that path when the 

start  node is  stimulated.  The frequency of a phenotype is the probability  that that 

phenotype will be produced when the start node is stimulated. An understanding of 

the system will involve a description of the dynamics and links between these various 

entities. 

The kind of network at the top of Figure 2 can be considered as a system with one 

locus and two alleles. The two alleles are the two parallel nodes at the same locus 

(layer) of each path. Let us set the initial weight to one of these nodes as w1 and the 

other weight w2 = 1-w1 because the total outflow weight from the common preceding 

node must sum to 1. Weight change only occurs if two different paths are chosen in 

the two traversals available in each generation. Therefore, weight change occurs with 

probability 2w1(1-w1).  With probability 1-2w1(1-w1) there is no weight change. Let us 

assume (without loss of generality) that the winning path (i.e. the path with higher 

reward) is associated with the node with weight w1. Then the new weight at time t+1 

of w1 is given by 

� 

w ,t +11 = 2w1(1 - w1)
w1(1+ l )

w1(1+ l ) +(1 - w1)(1+ l )
+ (1 - 2w1(1 - w1))w1 …(3)

For initial values w1  = 0.1, w2 = 0.9, and λ = 0.1, this gives the dynamics shown in 

Figure 4. 
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Figure 4.  Selection between two alleles at one locus. The allele  associated with 

higher reward reaches fixation, whilst the other allele goes extinct. 

The path (and phenotype) associated with higher reward reaches fixation, whilst the 

one with the lower reward goes extinct. 

Now let us consider the more complex network in Figure 3A. Here there are four 

paths and four phenotypes, or two loci with two alleles at each locus. Let the two 

weights at the first locus be w1 = x and w2 =  (1-x) and we two weights at the second 

locus be w3 = y and w4 = 1-y.  The frequency of each path is then… 

� 

P(A) = xy

P(B) = x(1 - y)

P(C) = (1 - x)(1 - y)

P(D) = (1 - x)y

…(4)

Again, the weights associated with the winning path are changed as in (1) and the 

weights associated with the losing path as in (2) followed by normalization. Consider 

the cases in which w1 and w2 will change. This happens only when the path pairs AC, 

AD and BC are traversed with probabilities  P(AC) = 2 P(A) P(C), P(AD) = 2 P(A)  

P(D)  and  P(BC) = 2 P(B) P(C),  respectively.  When the other pairs  are traversed, 

either fitness is identical and there is no change in weights, e.g. (B & D), or the paths 
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do not differ at  the w1  and w2 edge,  e.g  when paths  (D&C) or (A&B) are taken. 

Assume that in this case we wish to minimize the number of 1’s (filled circles) in each 

path. Looking at each case in turn then, A beats C, A beats D, and B beats C, and so 

w1 will always be strengthened or not changed at all in each generation according to 

the following equation…

� 

w1,t +1 = P(AC)+P(AD)+P(BC)[ ]
w1(1+ l )

w1(1+ l ) +(1 - w1)(1+ l )
+ 1 - (P(AC)+P(AD)+P(BC))[ ]w1

…(5)

Note that w2 is just 1-w1.  Similarly, w3 an w4 will only change when path pairs AB, 

AC, and CD are traversed in a generation. Figure 5 shows the vector field of the ∆w1 

and  ∆w3 for the various possible values of w1 and w3,  and the dynamics of allele 

frequencies and phenotype frequencies over time for initial conditions w1 = 0.2, and 

w3 = 0.1, and λ = 0.1.  

Figure 5. Selection at two loci, each locus having two alleles. The two fitter alleles 

(with weights w1 and w3) reach fixation whilst the other alleles (w2 and w4) go extinct. 

The fittest alleles (w1 and w3) and the fittest path, A, go to fixation, whilst the other 
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alleles and paths go extinct.  As the vector field shows this  is inevitable  from any 

initial condition of w1 and w3. Effectively the two alleles are in linkage equilibrium. 

Linkage Disequilibrium of Alleles in Paths

The network in Figure 6A is initially fully connected (in the forward direction). It has 

two  loci,  each  with  two  alleles.  We show that  it  is possible  to  establish  linkage 

disequilibrium by  weight  change  alone.  Consider  the  case  where  the  ordering  of 

reward is 10 > 01 > 11 = 00. Supplementary Material shows a deterministic model of 

how the weights  x,y and  z change over time to send the fittest path 10 to fixation. 

Alternatively, if the fitness function is 10 = 01 > 11 = 00, both paths 10 and 01 are 

maintained at  non-zero probability,  the ratio  depending on the initial  value of the 

weight x. The initially more frequent of the 10 and 01 paths reaches a higher steady 

state value, see Figure 6B. 

The capacity to maintain non-random assortment of the alleles by i. maintaining 10 

and losing 01 (in  the  selective  case)  and ii.  by maintaining  B and C at  different 

frequencies  in the neutral  case shows the capacity  for linkage disequilibrium. The 

network converges to make one path in the selective case, and two non-overlapping 

paths in the neutral case. As we saw in Figure 3A, there are some networks that will 

not  permit  the  maintenance  of  linkage  disequilibrium  because  it  is  impossible  to 

establish  two  non-overlapping  paths  because  of  a  node  bottleneck.  In  this  case, 

mutations will be required to produce a greater number of nodes at that locus, so that 

paths can pass without overlapping with each other, thus maintaining multiple linkage 

disequilibria  (pairwise  associations)  between  alleles  at  loci  on  either  side  of  the 

bottleneck. 
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Figure 6. The network has three parameters x,y and z, and encodes four paths, A,B,C 

and D. Part  A shows the dynamics of weights and path frequences for the fitness 

function 10 > 01 > 11 = 00. Path 10 (B, green) reaches fixation, and all other paths go 

extinct. Part B shows the dynamics of paths for the fitness function 10 = 01 > 11 = 00, 

for different initial weights of x of 0.6 and 0.4. Non-overlapping paths B and C are 

maintained at different concentrations that depend on the initial value of x. Paths A 

and D again go extinct. 

Assignment of Path Phenotypes
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The reward obtained by a path is a function of its phenotype bi. The assignment of a 

phenotype to a path is determined by how the path interfaces with the environment. 

Figure 7 shows some examples of paths and their path characters and how these path 

characters  may be  associated  with  reward  in  various  implementations  of  pathway 

evolution. See the Discussion for further implementation details.  
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Figure 7. Different ways in which a path can have a character (phenotype). (A) 

Each node has a binary character, nodes labelled 0 activate an extensor muscle, nodes 

labelled  1  activate  a  flexor  muscle.  (B)  The  position  of  a  node  along  the  x-axis 

determines  a real-valued character  from -1 to 1.  Mutation is  Gaussian in position 

along  the  x-axis,  i.e.  a  bypass  mutant  is  likely  to  be  to  nearby  neurons.  (C) An 

anticipatory  classifier  system  can  evolve  by  a  modification  of  PE  if  nodes  are 

conditions and edges are actions. A condition (t) – action – condition (t+1) triplet is a 

classifier.  

The  full  details  of  a  pathway evolution  (PE) algorithm are given in  the Methods 

section, and the C++ code is available in Supplementary Material. The Results section 

compares the performance of PE algorithm with various parameter settings against a 

tournament  selection  based  genetic  algorithm  (Harvey,  2009) on  various 

combinatorial  and real-value  optimization  problems,  and for  evolution  in  variable 

environments.  Finally  possible  natural  and  artificial  implementations  of  the  PE 

algorithm are outlined. 

Methods

The PE algorithm is described in Figure 8 and Figure 9. 
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Figure 8. The PE Algorithm Outline. See Figure 6 for details of the path traversal, 

crossover and mutation functions. 

A network is initialized with  N parallel linear directed paths (typically 1, 10 or 100 

paths) of L nodes in length. The simplest case described above involves N = 1, i.e. the 

system starts with a single path of nodes. Let the first node be the start node that will 

be  stimulated  at  the  onset  of  each  fitness  evaluation.  Each  directed  edge  has 

associated with it a transition probability Pij. Initially all probabilities along the chain 

are set to 1. If the system is initialised with more than one parallel chain then the sum 

of probabilities out of the start node to the first node of each chain are normalized to 

one so that each chain is equally likely to be traversed. Upon stimulating the start 

node each node in an activated chain will fire sequentially until the end of the chain is 

reached1. If there are many output edges from a node, only one of the post-synaptic 

nodes can become active. This ensures that only one path is active at one time. A 

noise term can be introduced to the transition probability to promote exploration. 

Because each node has a particular  characteristic,  each path of activity  also has a 

1 Pathways with loops are not described here for this complicates the issue considerably and requires 
nodes with a refractory period for example. 
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characteristic. For example, if we wish to implement a binary genetic algorithm using 

this  network  then  a  node  should  be  interpreted  as  having  a  label  (a  phenotype 

unrelated to the network dynamics described here) of zero or one, see Figure 4A. We 

randomly initialize the node phenotypes of the initial  chain2. For example, activity 

passing along the initial chain may produce the phenotypic sequence 0111010001. Let 

each phenotypic sequence so produced be associated with a reward r, as defined by a 

fitness function. 

Now, at each generation, two paths are generated and the reward due to each path is 

determined on the basis of the path characteristic. If these two paths have differential 

reward they compete with each other for resources. This is a tournament selection 

method as used in steady-state genetic algorithms. The edges along the winning path 

are multiplicatively strengthened  and  the  edges  along  the  losing  path  are 

multiplicatively  weakened,  following  which  all  outflow  edge  probabilities  are 

normalized at each node in the path. Note that if the two paths in a single tournament 

spatially overlap and share edges, then these particular edges are not modified. Later 

we investigate a diversity maintenance mechanism that involves weakening shared 

edges. This multiplicative element of transition probability change contributes to the 

autocatalytic nature of a unit of evolution, with strong paths growing faster than weak 

paths. Note that each of the two paths should have distinct eligibility traces that can be 

used to allocate the delayed reward appropriately. 

As well  as  traversal  probability  changes  modulated  by reward there  are  structural 

plasticity  operations occurring in the network that create  and destroy edges. Node 

mutations  can occur  with a  certain  probability  µ per  node whenever  that  node is 

active. Mutation of a node occurs by choosing an active node g in a traversed path and 

creating a new node. The node that activated the node g now activates the new node, 

and the new node activates the node that was activated  by the node  g. This biases 

mutation to make more bypass mutant grafts around the fitter paths. Also it is possible 

to imagine the mutation operation as not one of creating a new node, but rather of co-

opting an unused node from an existing node in the vicinity3.  Crossover from the 

2 In the knapsack problem the initial phenotypes of nodes are set to zero. 
3 Less specific variants of the mutation operator have been explored, e.g. allowing a new node to have 
connections from all nodes that were connected to its parent, or allowing it to connect to all nodes to 
which its parent node was connected.  
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losing path to the winning path and back again to the losing path may occur in some 

runs  with  a  low probability  χ.  This  is  a  2-point  crossover  operation  that  allows 

utilization of the useful parts of a winning path by the losing path. If a node is not 

active in some time period it is removed. Also, if a transition probability sinks below 

some threshold value, it is removed.

Figure 9. Details of path traversal, crossover and mutation operators.  

18

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
11

.5
53

5.
1 

: P
os

te
d 

11
 J

an
 2

01
1



Nature Preceedings , Fernando et al, 2011 

We see that a path is a unit of evolution because it multiplies, i.e. the frequency of 

path in a population of paths can increase multiplicatively, there can be variants, i.e. 

there  are  many  different  path  phenotypes,  and  there  is  heredity,  that  is,  a  node 

mutation  will  transform  existing  path  phenotypes  into  new  path  phenotypes  that 

resemble the original ones (like begets like). 

Results 

Several  optimization  benchmarks were used to  characterise  the PE algorithm with 

different  parameter  settings.  Performance  is  compared  to  a  microbial  GA on  the 

binary multiple knapsack problem and on a set of parametric optimization problems. 

The ability of the algorithm to show memory of past solutions is demonstrated. 

Combinatorial Optimization Problems 

The binary multiple knapsack problem is an extension of the simple 0/1 knapsack 

problem,  on  which  genetic  algorithms  have  been  somewhat  successful  (Chu  & 

Beasley, 1998). A knapsack has capacity C, and there are n objects. Each object has 

weight wi, and a profit pi. We aim to fill the knapsack for maximum profit but without 

exceeding its capacity, i.e. to find a vector x = (x1, x2…. xn) where xi ∈ [0,1], such that 

€ 

wixi
i=1

n

∑ ≤C and  for  which  
  

� 

P(
r 
x ) = pix i

i=1

n

� is  maximum.  In  the  multiple  knapsack 

problem, thee are m knapsacks. Each object is either placed in all m knapsacks, or in 

none at all. Each of the m knapsacks has capacity c1, c2…. cm, and each objects has a 

different  profit in each knapsack, i.e.  each objects  is defined by a profit  vector of 

length m. Again, no knapsack must be overfilled and maximum profit must be packed. 

A typical run on the hard Weing8 instance of the knapsack problem (Khuri, Back, & 

Heitkotter, 1994) is shown in Figure 10. This is a hard knapsack problem with 105 

objects and 2 knapsacks in which most pack vectors result in overfilling. To deal with 

this a punishment term is used in the fitness function that gives a negative fitness that 

is the extent of overfilling in all knapsacks. Otherwise the fitness is the profit of the 

knapsacks. On 30 independent runs, the PEA had a mean score of 615368 (sd = 7272) 
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and the microbialGA with population size 100 had a mean score of 600236 (sd = 

20003). The best solution obtained with the PEA was 622352 and the best score with 

the microbialGA was 623459 (the global  optimum).  In another  knapsack problem 

(Weish25) the microbialGA obtained mean = 9900, sd = 40.8 and max = 9936 (the 

global optimum) over 30 trials, whilst the PEA obtained a mean of 9925, sd = 21.5, 

and max = 9936. The PEA and the microbialGA are comparable on these problems. 
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Figure 10. Performance of the PEA compared to a microbialGA with population 

size 100 and the same mutation rate on the Weing 8-105 knapsack problem. Max 

fitness achieved by the PEA = 620060 which is  the 7th best  possible  packing,  the 

maximum being 624319. The following parameters were used. N = 1, L = 105, λ = 
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0.1, µ = 1/L, χ = 0 (no crossover), τ  = 200, ω  = 0.01, ρ  = 0, γ  (gamma) = 0. The 

PEA is run for 10000 generations, i.e. 20000 pathway fitness evaluations. 

Continuous Parametric Optimization Functions

A continuous value variant of the PE algorithm can be defined straightforwardly as in 

Figure  7B.  Each node is  associated  with a  real-value  number  character.  Mutation 

involves the production of a bypass mutant to a nearby node chosen as a Gaussian 

function (mean centered on the parental value, s.d = 0.1) of distance from the parent 

node. The position along the x-axis determines the real number encoded by a node. 

Figure 8 shows performance on the Sphere (Eq. 6), Rosenbrock valley (Eq. 7) and 

Quartic with noise (Eq. 8) functions, the equations for which are shown below… 

� 

f1(p) = pi
2

i=1

n

� - 5.12 < pi < 5.12 …(6)

� 

f2(p) = 100( pi+1
i=1

n - 1

� - pi
2)2 + (1+ pi)

2 - 2.048 � pi < 2.048 …(7)

� 

f3(p) = ipi
4

i=1

n

� +gauss(0,1) - 1.28 � pi <1.28 …(8)

Note that as opposed to the knapsack problem the function value must be minimized 

rather than maximized and so line 7 of Figure 8 is modified to read win = min(fitA,  

fitB). The GA tends to converge faster than PE to the solution. Note that PE with these 

settings behaves very much like a stochastic hill-climber (SHC), i.e. there is relatively 

little  diversity  of paths,  and large path overlap between paths, see Figure 11.  The 

number of simultaneously maintained phenotypes is low. 
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Figure  11.  (Top)  Performance  on  Sphere,  Rosenbrock,  and  Quartic  with  noise 

functions. The following parameters were used: N = 100, L = 20, λ = 0.1, µ = 1/L, χ 

= 0.01, τ  = 100, ω  = 0.01, ρ  = 0, γ  (gamma) = 0. The performance details on the 

right are for the Rosenbrock function. 

Interestingly,  we found that  with the  SHC like  parameter  settings  for  the PE, PE 

performed very poorly on  Rastrigin's function, which is a cosine modulation of de 

Jong’s Sphere function used previously. It contains many local optima and is highly 

multimodal with regularly distributed minima locations, see Eq. 9 below…
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� 

f4 (p) =10� n + (pi
2 - 10� cos(2ppi))

i=1

n

� - 5.12 � pi < 5.12 …(9)

However, PE with a GA-like parameter setting (right), in which phenotype diversity 

of paths is preserved for a longer period in the run, performed about as well as the GA 

on the Rastrigin function. To make the PE behave more like a GA, and less like a 

SHC, we increase tau (the period after which a node dies if it is not activated), we 

apply a non-zero γ  for exploration during a traversal so that even after a high fitness 

path has been found there is still a base level of exploration. Also, we implement a 

diversity maintaining change to the weight modification rule in which edges that are 

present  in  both  paths  are  in  fact  punished in  the  same way as  the  losing  path  is 

punished in line 13, Figure 8. 
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Figure 12. Performance of the PE algorithm on the Rastrigin function. (Left) PE with 

parameter settings as in Figure 6. (Right) PE with parameter settings as follows. N = 

100, L = 20, λ = 0.1, µ = 1/1000L, χ = 0.01, τ  = 1000, ω  = 0.01, ρ  = 0, γ  (gamma) 

= 0.01 +  overlapping edges punished as losing path.  Diversity maintenance is far 

greater with the GA like settings that preserve distinct phenotypic niches for a longer 

period of time. 

The  PE with  GA like  parameters  is  capable  of  performing  similarly  to  a  genetic 

algorithm on Restrigin’s function, whereas a GA with the SHC like parameters sets 

easily stuck on a local optimum. With these GA type parameters, many more nodes 

and edges are maintained in the network at any one time than in the solution to the 

easier  problems in Figure 11.  Also,  phenotypic diversity  is  slower to be lost,  and 

genotype overlap is less throughout the run. Without punishing overlapping edges the 

PE did not reach the same level of performance as the GA. 

Memory of Previous Solutions in Variable Environments

The extended evolutionary synthesis has begun to seriously study the evolution of 

evolvability  (Kirchner & Gerhart, 1998; Pigliucci, 2008). A population undergoing 

natural  selection  can  automatically  learn  from  past  environments  to  structure 

exploration  distributions  so  as  to  have  a  higher  probability  of  producing  fit 

phenotypes in novel but related environments (Izquierdo & Fernando, 2008; Kashtan 

& Alon, 2005; Toussaint, 2003). This can occur if there is non-trivial neutrality, i.e. a 

many to one genotype to phenotype map in which genotypes can be discovered that 

produce phenotypic exploration distributions that suit the problem (Toussaint, 2003). 

The  PE  algorithm  can  exhibit  similar  automatic  structuring  of  exploration 

distributions in variable environments. We present the simple example of a fitness 

function that involves an alternating counting ones and counting zeros problem with a 

period of E = 1000 generations. Figure 13 shows that the PE algorithm is able to learn 

from previous environments to rediscover previous optima more quickly. The GA is a 

direct encoding with no capacity for non-trivial neutrality and so cannot do the same, 

and forgets the all 1’s solution once it has worked out the all 0’s solution. Therefore 
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we demonstrate  that  the PE algorithm has the capacity  for memory of previously 

discovered solutions. 

Figure 13.  The alternating counting 1s and counting 0s problem. The PE algorithm 

can  retain  memory  of  previously  visited  optima  and  rediscover  these  paths  more 

rapidly the next time it is in the same selective environment. The GA did not improve 

over repeated presentations of selective scenarios. The parameters used were:  N = 

100, L = 64, λ = 0.1, µ = 1/100L, χ = 0 (no crossover), τ  = 1000, ω  = 0.01, ρ  = 0,  

γ  (gamma)  =  0,  maximum  number  of  nodes  per  layer  =  4,  no  punishment  of 

overlapping paths. Oscillation period = 25000 generations. 

The HIFF Problem

Some problems have interdependency between variables, i.e., the fitness contribution 

of one variable is contingent upon the state of other variables, and there are structured 

dependencies that are potentially exploitable. The XOR problem considered in Figure 

6  was  such  an  example.  An  extension  of  this  is  the  hierarchical  IF-and-only-IF 
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problem  (HIFF)  (Watson,  Hornby,  &  Pollack,  1998) described  by  the  following 

equations… 

��

�
�
�

+

=
=

� =

k

i

i
k

n
SgSSnf

ssg
11

1
otherwise     ),(),.....,(

1n if                                             ,1
),.....,( (5)

Where si is the ith variable of the configuration, Si
 is the ith disjoint subpartition of the 

variables,  f(p1,…,pk)  = 1 if  

� 

($(s � S)" i : pi = s) ,  and  0  otherwise;  where  

� 

Σ  is  the 

discrete set of allowable values for the problem variables; and n = kH, where 

� 

H � Z+  

is the number of hierarchical levels in the system or subsystem, and k is the number of 

submodules per module. In HIFF we consider only binary variables, i.e.,  

� 

Ζ � {0,1} 

and where k = 2. 

The lowest level of fitness contributions comes from examining adjacent loci in the 

phenotype and applying the transfer function and the fitness function. The transfer 

function is [0,0] -> 0, [1,1] -> 1, and all other pair types produce a NULL (N). The 

fitness function for each level just sums the 0 and 1 entries at that level. The second 

level is produced by applying the same transfer function to the output of the first 

transfer function. The fitness contribution of this next layer is again the number of 0s 

and 1s in this layer multiplied by 2. This goes on until there is only one highest-level 

fitness  contribution.  The  fitness  landscape  arising  from  the  HIFF  problem  is 

pathological for a hill-climber since there is a fractal landscape of local-optima, which 

means that  the problem requires exponential  time to solve.  The global optima are 

either all 1’s and all 0’s. 

Figure  14  shows  performance  of  the  PE  algorithm  on  the  HIFF  compared  to  a 

microbial GA without crossover. PE performs consistently better than the GA. In all 

cases PE found the optimum by within 200000 generations, but the GA never found 

the optimum within this time. We propose that the good performance of the PE on the 

HIFF  problem  is  because  of  its  capacity  to  learn  to  achieve  suitable  linkage 

disequilibrium between nearby alleles.  
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Figure 14.  The 64-bit HIFF Problem. The PE algorithm found the optimal solution 

but  the  microbial  GA  without  crossover  is  stuck  far  from  the  optimum.  The 

parameters used were: N = 10, L = 64, λ = 0.1, µ = 1/100L, χ = 0 (no crossover), τ  

= 10000, ω  = 0.01, ρ  = 0, γ  (gamma) = 0, maximum number of nodes per layer = 

20, no punishment of overlapping paths. 

Expansion and Contraction Dynamics during Search and Discovery

Figure 15 shows the performance of PE on the royal road function. The simple royal  

road function is shown below…

from Figure 1 of Mitchell and Forrest4. For a bit string of length 64. 8 fitness points 

are obtained for each of the schemata si that is matched by the bit string. * indicates 

don’t care. The royal road is a royal step pyramid because it does not matter in which 

order the schema are accumulated.  When PE is applied to the royal road, one can 

immediately  notice  that  during  the  exploration  phase  there  is  an  increase  in  the 

number of nodes corresponding to loci of the 8-bit schemata that have not yet been 

found.  Once  a  schema  is  found,  the  path  corresponding  to  that  schema  gains 

dominance, and alternative paths are lost by node deletion gradually over time. 

4 http://web.cecs.pdx.edu/~mm/handbook-of-ec-rr.pdf
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Figure 15. PE on the 64-bit royal road function shows automatic size changes. 

During exploration there is an expansion in the number of nodes and edges, followed 

by contraction after the solution is found. 

Discussion 

Can a path of activity be legitimately considered to be a unit of evolution? Maynard 

Smith said that  group selection requires the existence of cohesive, spatially discrete 

groups, that ‘‘reproduce’’ by sending out propagules, and that can go extinct (1976, p. 

282). He defined a population of units of evolution as “any population of entities with 

the properties of multiplication (one entity can give rise to many), variation (entities 

are not all alike, and some kinds are more likely to survive and multiply than others), 

and heredity (like begets like) will evolve. A major problem for current evolutionary 

theory is to identify the relevant entities’’ (p. 222, (Maynard-Smith, 1988)). We have 

identified a path as a unit of evolution. A path is capable of multiplicative growth in 

the population of paths, however, it does not give rise to a distinct spatially separate 

entity during growth, but strengthens the probability of traversal of its edges. We have 

demonstrated that path characters can have variation and heredity. 

Implementations of the PE Algorithm 

The neuronal networks of the brain provide the most natural implementation of the PE 

algorithm  and  its  many  possible  variants5.  The  fundamental  operation  of  node 

mutation and pathway crossover that the PE algorithm depends upon, closely relate to 

5 There are a great variety of possible rules for determining when a path should be strengthened and 
how a traversal should be made, just as there are a great variety of possible genetic algorithms. The  
pair-wise tournament selection algorithm is not well suited to control of on-line behaviour in which a 
network of pathways, e.g. implemented in neuronal networks, evolves subject to reward obtained in 
real time. So far the stability of a path has been related to the reward that is obtained by taking that  
path. However, it has been necessary to assess two paths from the same starting condition and compare 
the reward obtained between them. This is unsuitable for online behaviour control. The key to linking 
the PE algorithm to online  control  lies  in  the  domain of  learning  classifier  systems where  it  was  
discovered that a more effective search could be carried out if classifiers (which here can be interpreted  
as paths where a node is a condition and an edge is an action) were stabilized on the basis of the  
accuracy of their prediction of the reward (or sensory state) obtained in the next time step, whilst  
selection  of  edges  (actions)  was  done  using  an  e-greedy  strategy  based  on  the  predicted  reward 
associated  with  an  edge  (action)  (Butz,  2006;  Wilson,  1995).  This  would  preserve  pathways  that 
accurately predict low reward as well as those that accurately predict high reward. Our critical insight  
here is that an edge is described not by one but two variables, a prediction accuracy that determines its 
growth rate, and a predicted reward that determines the traversal of paths.
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the  synaptic  pathway  mutations  first  proposed  by  Adams  (Adams,  1998). 

Furthermore,  the  recent  discovery  of  rapid  structural  plasticity  (in  the  order  of 

seconds)  in  the  brain  provides  indirect  support  that  cognitive  and  behavioral 

adaptations could be produced by evolution of neuronal pathways (Butz, Worgotter, 

& van Ooyen, 2009; Holtmaat & Sovoboda, 2009; Lohmann & Bonhoeffer, 2008). In 

real neuronal networks it is possible that mutations will be able to shortcut several 

layers,  or add layers, producing variable path lengths. A  reward biased spike-time 

dependent plasticity (STDP) rule with eligibility traces is a very natural biological 

implementation of the multiplicative weight update we use in the PEA  (Izhikevich, 

2007). The PE perspective invites us to think of the analogue of higher-order units of 

selection  in  pathway-based units  of  evolution.  Polychronous groups are  not  linear 

pathways but trees of activity that may also evolve by the mechanisms described here 

(Izhikevich, 2006). 

The fact that PE allows natural selection with unlimited heredity in the absence of 

template  replication  permits  the  possibility  that  in  the  origin  of  life,  some  yet 

unknown  means  of  implementing  PE  may  have  been  a  precursor  to  template 

replication. Any system in which reward can be associated with an eligibility trace to 

strengthen  a  pathway  is  capable  of  PE,  e.g.  phosphorylation  or  other  chemical 

modifications may mark metabolic pathways for strengthening on the basis of reward. 

The pathway evolution viewpoint proposed for the first time here allows us to take a 

Darwinian  population  perspective  on adaptive  network  processes  and may inform 

experimentation, for example, in the neurosciences, what is the probability of fixation 

of a novel pathway or edge (synapse) in a real neuronal network as a function of its 

relative  reward?  Viewing  a  pathway  as  a  unit  of  evolution  that  is  capable  of 

multiplication without template replication helps us understand how adaptation could 

occur by a true Darwinian process yet where  we see no obvious spatially  distinct  

units. This is because networks store an effective population of intertwined pathways. 

This proposal extends the neuronal replicator hypothesis (NRH) that argues that there 

exist  informational  replicators  in  the  brain,  i.e.  autocatalytic  entities  capable  of 

producing offspring that are correlated with their parent in fitness, and hence capable 

of  accumulation  of  adaptations  by  natural  selection.  Previous  formulations  of  the 

NRH  focused  on  possible  mechanisms  of  template  replication  in  the  brain  (C. 
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Fernando,  Goldstein,  &  Szathmáry,  2010;  C.  Fernando,  Karishma,  &  Szathmáry, 
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