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Abstract

This thesis presents a new integrated approa.ch  to process pla,nning  aad job-shop

scheduling. The relationship between planning and scheduling is reassessed and the

line between the two tasks is made significantly more blurred than in the usual

treatment. Scheduling is traditionally seen as the task of finding an optimal way

of interleaving a number of fixed plans which are to be executed concurrently and

which must share resources. The implicit assumption is that once planning has

finished scheduling takes over. In fact there are often many possible choices for

the sub-operations in the plans. Very often the real optimisation problem is to

simultaaeously  optimise all the individual plans alzd  the overall schedule. This

thesis describes how manufa.cturing  planning has been recast to allow solutions to

the simultaneous plan and schedule optimisation problem, a problem traditionally

considered too hard to tackle at all. A model based on simulated coevolution is

developed and it is shown how complex interactions are handled in an emergent

way. Results from various implementa.tions  are reported.

Underlying this new approach is a feature based process planning system that is

used to generate the space of all possible legal process plans for a given component.

This space is then searched, in parallel with spaces for all other components, using

an advanced form of genetic algorithm. The thesis describes the development of the

ideas behind this technique and presents in detail the constituent parts of the whole

system.
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Chapter 1

Introduction

1.1 Introduction

Modern manufacturing is a complex business involving many disparate functions.

Any large manufacturing company will have whole divisions dedicated to, for in-

stance, marketing, accounting and high-level strategic planning. However, it might

be cla.imed that a.t the heart of many manufacturing enterprises is the three stage

process of designing the products; planning how to manufacture the products; and

deciding how to concurrently manufacture several different products so as to make

best use of the production facility. The first of these activities, unsurprisingly, is

referred to as design engineering, the second as process planning and the third

as manufacturing scheduling. Over the past two deca.des,  or so, more and more

advanced computer based methods have been developed and introduced into both

design and manufacturing. In the field of computer aided design (CAD) we have sys-

tems, to mention only a few, capable of drafting designs, modelling 3D components,

or calculating stress concentrations over a given model. In computer aided man-

ufacturing (CAM), as well as computer controlled manufacturing machines, there

are computer based tools for aiding in, or sometimes automating, process planning,

scheduling and other areas of manufacturing planning such as material handling (de-

livering materials to the right place at the right time). Present CAD/CAM systems

1



have yet to rea.lise  their full potent’ial  for industrial users. This is largely because of

the iack of integrat,ion  of the various pa.ckages  used in most installations. R.ecently

there has been much support for the argument, that advanced computer aided pro-

cess planning (CAPP) systems should play an important role in bridging the gap

between CAD and CAM [19, 108, 551.

In most manufacturing environments. for a generative process planning system1  to

fulfil1 its potential, a number of key issues must be tackled. Two of these issues

have been concentrated on here. Firstly. the degree to which the planning system is

integra.ted  into the overall production system. Secondly, the planner should not just

produce feasible plans but optimal or nea,r optimal plans according to some global

costing criterion.

The research described in this thesis centres around the development of a prototype

generative process planning system which was designed with these two issues firmly

in mind. The system is for use in a. multi-machine environment and deals with

conventional metal removal processes on prismatic components. More specifically,

the integration issue was tackled by allowing the planning system to be very closely

linked to a design system, and by developing planning techniques which allowed a

more flexible approach to scheduling. Close regard to the problems of communi-

cation with a computer based design system led to the adoption of feature based

methods in the planning. That is, every component is thought of as being com-

posed of a number of manufacturing fea.tures  (holes, slots, pockets,..) to be cut from

the blank. These features are related by a network of geometric and technological

constraints.

The optimisation issue was tackled by taking a radical new approach involving the

use of stochastic search over a space of all possible process plans. This approach

was extended to tighten the integration between planning and scheduling by severely

blurring the traditionally rigid line between the two.

‘A generative process planning system produces plans from scratch given a description of the

part to be manufactured and knowledge of the manufacturing facility. This will be discussed in

more det%ail  in the next chapter.

2



The va,st majority of the resea.rch  described in this thesis was ca,rried  out in the’

Depa,rtment  of Mechanical Engineering, University of Edinburgh during the period

1986-1989 as pa.rt  of a SERC(ACME) project entitled Representation, Reasoning

and Decision Making in Process Planning with Complex Components. Only those

parts of the research carried out by the author are described in detail; those pa.rts

which were done collaboratively (some of the work described in Chapter 3) are

clearly indicated. Much of the material reported here has been published elsewhere,

in slightly different form, as papers in various journals and international conference

proceedings.

1.2 Traditional Approaches to CAPP

Because of the complexity of the task, generative CAPP was an obvious area for

the application of AI. Most of the recent work on this topic has involved the use

of AI techniques [26,  79, 83, 59, 1111.  As already mentioned, any pra,ctical  planner

should consider the most efficient  way to manufa,cture  the part. The criteria to be

used will vary according to the nature of the manufacturing facility but are likely

to involve interaction with other areas of the overall manufacturing planning task,

such as scheduling. This aspect of the problem is important because there are often

vast numbers of alternative ways to manufacture a component. These will vary in

the order and number of operations, the choice of machines and tools and workpiece

orientation. Very often these alternative plans will have widely differing costs. The

orderings and operation choices will usually be subject to various constraints, many

of which are generated as part of the planning process. All this adds up to a very

formidable problem.

Much early work ignored this dimension of the problem, but those researchers con-

cerned with generating efficient (low cost) plans have tended to follow traditional

AI or OR approaches [26,  111, 811. These involve using heuristic search to greatly

reduce the size of the problem space considered. The heuristics are embedded within

the planning algorithm and a single plan is gradually built up as a solution to the

3



* problem. Finding sufficiently powerful heuristics is often extremely difficult. Be-

cause of the complexity of the problem, these sorts of approaches are very unlikely

to find anything like a global optimum in anything but the simplest of cases [lOrj, 131.

However, they avoid generating very inefficient plans.

It is very difficult, to find a general way to take into account int’eractions  with other

component’s process plans with this sort, of approach. Hence the planning and

scheduling functions are usually treated as separate. The scheduler’s job is to in-

terleave, as efficiently as possible, the separately genera.ted  process plans for some

number of components to be manufactured concurrently. Some recent approaches

have generated some alterna.tives  in the plans to give the scheduler more flexibility

[106, 1021.

The method described in this thesis, which amounts to a new planning l:a,ra,cligm,

relies on the implicit generation of a huge number of possible plans. This space of

plans is then searched for the optimal solution.

1.3 A New Approach to CAPP

This thesis concentrates on two core aspects of a complete framework for dealing

with a certain class of design and manufacturing problems. The overall approach is

now briefly presented. This is captured, at a very high level, in Figure 1.1. A design

system, whose description is outside the scope of this thesis2 produces manufac-

turing feature based component and blank representations. These representations

are compared in order to find out which component features are to be machined

and which, if any, already exist in the blank. The complete space of plans for each

component is implicitly generated, giving all the ordering and operation parameter

2When  this work was started the design system did not exist, but its interface to the plan

generation system was defined, so we could act as if it did. This system has now been developed

and is linked to the modules described here.

4



a,lternatives.3  These spaces are searched in para’llel,  taking into account interactions

between and within pla.ns, using an ecosystem model, based on an advanced ge-

netic algorithm. From this emerges a. solut.ion to the simultaneously optimal plans

and schedule problem. Tha.t is, t’he plans for ea,ch component to be ma.nufactured

are individually optimised according to such criteria as machining costs and setup

costs; but the optimisa.tions  are done in parallel with interactions taken into account.

Hence the plans are individually optimised as much as possible while causi,  tg as few

intera.ctions  (e.g. bot.tle necks in overall schedule) a.s possible. There is no explicit

scheduling sta.ge,  but, a. schedule emerges, for a schedule is just a description of the

parallel operation of a number of plans. This new technique replaces the traditional

two stage planning-then-scheduling approach and effectively re-evaluates the rela-

tionship between planning and scheduling: in this new view they are inextricably

part of the same problem. The earlier, knowledge based, parts of the system (plan

spa.ce generator) determine the boundaries a.nd structure of the search space that

the emergent optimisation techniques work in (parallel genetic algorithms). This

approach makes very heavy use of genetic algorithms, a. powerful search technique

very loosely based on natural evolution, a topic which will be dealt with in detail in

a later chapter.

The last two modules of this system are dealt with in this thesis, for further details

of other aspects of the system see [57, 301.

1.4 Thesis Contributions

The research methodology used was to develop prototype systems aimed at proof-

of-concept demonstrations of general techniques. As such, the main contributions

of this thesis are as follows:

3This refers to the fact that all the data needed to explicitly construct the search space point by

point is made available. This amount of data is of course quite manageable, whereas the explicitly

generated search space would certainly not be. Enumerative search on this kind of problem is quite

out of the question.
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l The development of general algorithms and representation techniques for gen-

era6ing  spaces of all possible process plans for a class of prismatic parts;

l The analysis of the resultant optimisation problem of searching this space for

a single near-optimal plan;

l The development of a useful cost function to allow the application of optimisa-

tion techniques to this problem, the function has a number of subtleties which

are conducive to more efficient search;

l An investigation into the application of traditional search techniques to this

problem;

l The development of a genetic algorithm to search this space in a far more

satisfactory way than the previous techniques;

l An experimental investigation into the use of this technique on the process

plan optimisation problem;

l The development of a sophisticated extension of this t;echnique to handle the

parallel optimisation of many process plans for different components, thereby

tightly integrating planning and scheduling and effect,ively  re-evaluating the
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job-shop scheduling problem by showing how the standard definition is far

more restrictive than necessary;

l Several of the points above also resulted in general contributions to the field

of genetic algorithms:

- An early use of complex integer strings;

- An early use of heuristics with the genetic search;

- The first ever use of a ‘multi-species’ parallel distributed genetic algo-

rithm.

1.5 Thesis Outline

The thesis is structured as follows.

Chapter 1. Introduction

Chapter 1 is this introductory chapter.

Chapter 2. Background

This chapter provides some technical background to material covered later in the

thesis. Process planning is discussed and va,rious  approaches to computer aided

process planning are outlined. There is a short section giving an overview of opti-

misation and search since these topics loom large in this work. Other research in

CAPP is reviewed, relating it to the approach developed in this thesis. To allow a

better flow, other technical background material, such as that on genetic algorithms,

is introduced later in the appropriate parts of the thesis.

Chapter 3. The Plan Space Generator

This chapter describes the plan space generator: that part of the system used to

find the space of all possible process plans for a given component. The methods for

representing information about the component and blank, the machine shop, and the

manufacturing practices to be followed, are described. The algorithms for using this
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information to generate the plan space a.re detailed. Two different implementations

of the system a,re discussed. A number of research issues a.nd limitations a.re brought,

out.

Chapter 4. The Process Plan Optimisation Problem

This chapter analyses some general properties of the search spaces generated by the

plan space generator. Methods are developed for estimating the size of a particular

instance of the problem. A simple cost function suitable for use with most combina-

torial optimisa.tion  techniques is introduced. A far more subtle version is developed!

this second function is shown to be conducive to more efficient search.

Chapter 5. The Application of A* and Branch and Bound

The earliest a.ttempts  at discovering a solution to the process plan optimisation

problem were based on using general heuristic search. Because of the complexity of

the problem, it was decided  that this was the most promising area of ‘conventional’

optimisation techniques. The techniques used were adaptations of the A* algorithm

and the branch and bound method. This chapter describes how these techniques

were applied and presents the results obtained.

Chapter 6. Application of Genetic Algorithms to the Process Plan Opti-

misation Problem

The experiments with conventional search techniques described in chapter 5 were

not very successful. This led to an attempt to develop a technique that worked with

complete candidate plans. Genetic algorithms were considered suitable a.nd were

successfully applied in a robust and general way. At the time this research was done

they were a very obscure technique and had never been applied to a problem of this

scale. This part of the research, and that of the next chapter, make a number of

contributions to the field of genetic algorithms as well as to CAPP and manufa.c-

turing scheduling. Since the genetic algorithm parts of the research described in

this thesis are probably the most original, and provide its major contributions, in

order that the reader may follow the technical material, this chapter provides an

introduction to genetic algorithms. The application of the technique to process plan

optimisation is then described. Results from a number of experiments are presented



and a. series of specia.lly developed heuristic sea.rch  methods for seeding the initial

popula,tion  are described.

Chapter 7. An Ecosystems Model for Integrating Planning and Schedul-

ing

Being able to find individually nea.r optimal process plans may be of very little value

if there is no communication between the pla.nning  systems and the ma.chine shop

scheduler. A number of individually optimal plans may interact to cause serious

bottle-necks in the sc.hedule.  This chapter develops a way of facilitating the neces-

sary integration of planning and scheduling to avoid this problem. The technique,

based on multi-popula.tion  pa.rallel  distributed GAS, is capable of simultaneously

optimising the process plans of a number of components while taking into account

interactions between them. At the same time a near-optimal schedule emerges. This

radical new approach to integra.ting  process planning and scheduling a.mounts  to a.

re-evaluation of the job-shop scheduling problem, by pointing to a. more general

and fundamental chara.cterisation  than the one normally used. Two different imple-

mentations of t,he basic idea are compared. Results from a number of experiments

are presented. The limitations of these preliminary experiments are discussed and

future research directions are highlighted.

Chapter 8. Conclusions

This chapter sums up the contributions of the thesis and rounds up with some

general conclusions.



Chapter 2

Background

2.1 Introduction

This chapter provides some technical background to ma.terial  covered later in the

thesis. Process planning is discussed and various approaches to computer aided

process planning are outlined. An overview of optimisation and search is given since

these topics loom large in this work. Other research in CAPP is reviewed, relating

it to the approach developed in this thesis. To allow  a better flow, other technical

background material, particularly that on genetic algorithms, is introduced later in

the appropriate chapters of the thesis.

2.2 Process Planning

A process plan is a detailed set of instructions on how to manufacture a given part.

Typically it lists the order in which operations must be performed, the appropriate

machine tool to use for each operation and the required machining parameters. A

more general definition is given by Chang and Wysk [12]:
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Process pla.uning  is that function within a manufacturing fa.cility that *

est,ablishes  which machining processes a.nd parameters are to be used (as

well as those ma.chines capa.ble  of performing these processes) to convert

(machine) a piece part from its initial form t.o a final form predetermined

(usually by a design engineer) from an engineering drawing.

A process planner must take into account constraints dictated by bot.h the part

geometry and required tolerances when choosing appropriate machines, processes,

tools and setups (part orientation on the ma.chine  bed), and imposing aa order on

the operations.

In addition a process planner must select jigs and fixtures. These are devices for

guiding a tool or holding a workpiece in a position most suitable for machining.

Very often these devices are non-standard and their proper use is a skilled business.

In general a process planner will have to perform the following tasks:

l Work piece selection

0 Manufacturing Process selection

0 Process equipment selection

0 Cutting tool selection

0 Setup selection

l Fixture and fitting selection

0 Operation sequencing

0 Process parameter selection

0 NC instruction generation

The last of these refers to generating the code to run computer controlled cutting

machines.
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2.2.1 Computer  Aided Process Planning

Manual process planning requires a great, deal of time, knowledge and experience.

Skilled planners ta.ke  many yea.rs to build up the required experience. Automated

process planning has obvious attractions.

Early computer ba.sed  process planning systems used editors and other tools t,o help

in report and plaa sheet generat,ion,  and in the storing and retrieval of plans [107].

Such systems ca.n greatly improve the efficiency of a planner and ma.ny  a,re still in

use.

More elaborate CAPP systems can be divided into two categories, va.riant  and gen-

erative. Variant planning relies on data, retrieval procedures to find standard plans

for similar components. In order to do this, group technology codes are used to

describe designs in terms of geometric and manufa.cturing  features. However, there

are many drawbacks involved in the use of such codes: tedious data. entry, ambiguity

when the code is too short, over specializxtion when the code is too long. Of course

the method is of no use when the component to be planned does not fit into any of

the standard part fa,milies. Generative pla.nning  attempts to overcome these prob-

lems by building a plan from first principles for each part. Such a system requires

a detailed description of the part and of the manufacturing fa.cility.

The research described in this thesis falls under the heading of generative process

planning, although it will be seen that the approach taken is highly non-standard.

The form in which the component is represented as the input to a CAPP system can

be a crucial issue, heavily effecting the potential of the system. Generative systems

normally use some sort of special description language which might be based on a

CAD format or a solids modelling format, or as in this work, a specially designed

symbolic language which describes a part as a collection of features (holes, slots,

pockets etc.) and their relationships. This idea seems to date back to Descotte and

Latombe  [26].
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Specific approaches to generative CAPP will be discussed later in this chapter. But,

since some of those involve optimisation, and optimisation is absolutely central to

this thesis, first there is a short discussion of optimisation and search.

2.3 Optimisation and Search

An optimisation problem involves minimising (or maximising) some cost function.

For functions of continuous variables various calculus based methods are often used

[5]. One technique is to solve the set of equations resulting from setting the gradient

of the objective function to zero (partial differentiation wrt to each variable yields

zero). More common are the ideas of hill climbing, for maximisation, or gradient

descent, for minimisation. In order to perform gradient descent (hill climbing is

directly analogous), choose some starting point, and move downwards in the direc-

tion with steepest slope mltil a minima is rea,ched.  Both of these methods are local

in scope; they require confinement to some restricted neighbourhood of the point

currently under t,est.  Beca.use  of this t.hey  are prone to missing global minima by

becoming stuck in local minima. Figure 2.1 illustrates this point; if a gradient de-

scent had started at points A or B it would have found local minima only, it would

have had to have started at, for instance, C to find the global minima. These tech-

niques also require well-behaved functions: the slope must be everywhere defined.

Many practical optimisation problems involve noisy discontinuous cost functions.

For these problems calculus based methods are rarely robust - it may be possible

to tune them to perform extremely well in restricted circumstances, but they usu-

ally do not perform adequately over a wide range of problem instances whose exact

properties can not be predicted.

Most combinatorial optimisation problems[l4,  1091  (finding an optimal combination

from a set of resources) cannot be cast in the terms required for gradient descent

methods. Typically these problems involve discrete units, such as the machines,

tools, and setups of the process plan optimisa,tion  problem, or the operations of the

manufacturing scheduling problem, both central to this thesis, or the cities of the
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Figure 2.1: Local and global optima.

well known travelling salesman problem [14].  For these sorts of problems various

search techniques may be applicable. The notion of a search space is a very powerful

one in characterising how these methods work. These are abstract spaces in which

each point represents a possible complete or partial solution to the problem. When

each point represents a complete solution the space is of a fixed dimensionality and

the optimisation proceeds by searching through this space. moving from point to

point looking for the lowest cost solution. Where each point represents a partial

solution, the concept of dimensionality does not apply and the search proceeds by

moving from partial solution to partial solution trying to build up the least cost

complete solution. It can also be useful to think in terms of a spa.ce of nodes - each

node is a step in the solution and the aim is to find a low cost path from some start

node to a goal node, passing through a number of intermediate n.odes.

Various search techniques exist for tackling these sorts of problems. A large number

of enumerative methods have been developed by workers in both Operations Re-

search (OR) and Artificial Intelligence (AI). In their simplest form these methods

look at the cost of every point in the space or every potential path to a goal node.

In that form they are only of any use on small problems as the search time becomes

infeasibly large for bigger problems. For the N city travelling salesman problem

there are N! points in the space of complete solutions (permutations of the cities).
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This is 125 for 5 cities, 40,320 for 8 cities and 2.7~10~~  for 30 cities, here we have an

example of conabinaforial  explosion. One way of overcoming this difficulty is to use

heuristic sea,rch.  This involves augmenting some enumerative search technique with

a heuristic (rule of thumb) that, is designed to guide it to a. good solution while only

considering a very small proportion of the search space. If such heuristics can be

found the search is then computationally feasible. Finding good heuristics is usually

very difficult, especially if some robustness is required. Generally heuristics might

be made to work well in one set of circumstances but fall over as soon as they are

presented with a. new set. These methods can very often be fooled by local optima.

A third class of techniques are search a,lgorithms which involve the use of random-

ness. Simple random sea,&  (picking points from the search space at random and

saving the best) is usually no better than exhaustive search (complete enumera-

tion). However, techniques tl1a.t  involve some sbochastic  elements. such a.s simula,ted

annealing [66] and genetic algorithms [49, 371, can avoid the use of heuristics and

overcome the curse of local opt.ima.  The random elements allow these methods to

sample points over a. large volume of the search space and accept poor solutions

which may lead to an optimal one. Techniques from the second and third classes

will be described in more detail later when their application to the process plan

optimisation problem, and a generalised version of the job-shop scheduling problem,

is explained.

It should be noted that the search for global optima in large complex spaces is

fraught with a major difficulty - very often it is difficult or impossible to judge if we

have found a global minima. So usually we are interested in near-optimal solutions,

that is solutions which appear to at least be good local minima. This often means

finding a technique that consistently performs better on the particular problem than

other techniques tried.
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2.2 Various approaches to generative CAPP

Most generative CAPP systems perform backwards planning. Assuming that we

have a finished component, the goal is to ‘fill’ it’ until it matches the starting blank.

A drilling process ‘fills’ a hole, a slot milling process ‘fills’ a through slot, and so

on. Backwards planning starts with the finished form, whose properties are known,

and searches backwards for processes to fulfil1 (at least) the worst preconditions

that the previous process can start from (e.g. find a, roughing process that leaves

an intermediate state suitable to start the finishing process chosen for fulfilling the

final component requirements). Planning back to less accurate initial conditions

generally involves far less search than attempting to plan forwards, making sure all

preconditions are accura.tely  satisfied. Backwards planning is the approach taken in

this thesis.

Early generative CAPP systems tended to use decision trees to encode the manufac-

turing knowledge and planning strategies [116]. These systems were very inflexible

and difficult to maintain. The restrictions of such approaches led to investigations

into the use of AI techniques in CAPP.

Descotte and Latombe’s GARI planner is one of the best known early AI based

generative CAPP systems [26].  It employed a production rule knowledge base to

store process capabilities. The right-hand side of each rule encoded a manufacturing

action (or choice) and these were weighted according to how closely they should be

followed. Parts and machines were described using special purpose symbolic struc-

tures, the part descriptions were feature-based. The core of the planning algorithm

used constraint propagation; at each cycle an action was taken to further constrain

the solution until a plan had been built. Feature interactions were not taken into ac-

count except for very simple cases. However, this was a demonstration of a powerful

approach which has been very influential.

Inui et al. [59] were among the first to attempt to integrate CAPP more closely

with design. Their expert system based CAPP system used a dynamic feature-
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based product model. They used a comparison process and const,raint  checking

procedures not unlike those introduced in the next chapter.

Hayes et al. [46] used a fairly sophisticated expert system approa.ch  for planning

for a single machining centre. They only dealt with simple components but they

did ma.ke an attempt to tackle the cost and operation sequencing problems in more

detail than the projects mentioned above, all of which ignored the plan cost as a

consideration. Hayes et al. embedded a minimise-setup heuristic in their planning

algorithm which met with some success.

van? Erve [ill] developed  a prototype expert system for machine selection and

cutting tool cha.racteristics for prismatic parts. Again, cost wa.s  taken into account

in making choices and sequencing operations. A local best first search was embedded

into parts of the decision making machinery.

Gindy [Sl] describes a hiera.rchical  structure for feature definition and an information

structure for developing process plans for prismatic parts. Again some local search

has been incorporated into the planning logic to improve plan costs by minimising

setups and the like.

Although these later approaches do take into account plan costs to some extent, the

motivations for investigating the approach described in this thesis were the difficul-

ties encountered with the more traditional approach of embedding heuristic search

into the core planning algorithms. If we characterise the process planning task as,

essentially, to find an optimal distribution of [machine/process/tool/setup] combi-

nations over a set of features, there is the added difficulty of taking into account

the interactions between the features which impose constraints on the plan. These

constraints appear as partial orderings between operations and can often only be

discovered during the planning process. If optimal plans are to be found using heuris-

tics embedded in the planning algorithm, these heuristics must be strong enough to

handle the combinatorial explosions which are inevitable in this kind of problem,

as well as being able to cope with the fa.ct that constraints are being discovered all

the way through the planning procedure. That kind of approach did not look at
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all prolnisil~g  for the general  multi machine environments we wished to model. The

FORBIN project at Yale was a.ttempting  to solve a similar problem with a tradi-

tional approa,ch,  a report on their experiences [105]  deta.iled  overwhelming problems

with the combinatorics of the search.

Hence it was decided to attempt to implicit,ly  genera.te  the entire spa,ce  of plans,

including all constraints. It was felt it would be easier to deal with a. completely

defined search spa.ce as opposed to a partially defined one.

Palmer and Hall [88] later took a similar approa.ch,  using branch and bound search

on a space of possible plans. They were not able to produce very good results, having

very similar experiences to those described in Chapter 5, where the applica.tion  of

branch and bound search is dealt with.

Vancza a,nd Ma.rcus  [IlO], quite independently, also decided to investiga,te  opt-imi-

sation within a completely defined space of pla.ns.  They also decided to use genetic

algorithms. Their approach was quite different to that described later in Chapter

6, using a very different representation, a.nd different genetic operators, and acting

on more constrained problems than those investigated here. Nevertheless. they too

demonstrated that the use of genetic algorithms in process plan optimisation can be

a very powerful approach.

2.5 Scheduling

Scheduling is the task of sharing out the factory resource> (machines, labour, tools

etc.) given a set of process plans describing how to manufacture a number of dif-

ferent components. Essentially it consists of interleaving the plans so as to make

best use of the resources, assuming that there are potential clashes where the same

resource might be needed in the manufacturing of more than one component. Very

often the objective is to minimise makespan, that is to minimise the period spent

manufacturing the components. The input to scheduling is very often a set of fixed

plans, although, as we shall see in the next section, there may be some alternatives



in the pla.ns. Scheduling will be discussed in a more formal way in Chapter 7 which

is concerned with a new approach to the problem.

2.6 Integrating Process Planning and Scheduling

As mentioned in the last chapter, a major aim of this thesis is to introduce a tech-

nique for integrating process planning and scheduling. There is a huge body of

work on schedule optimisation, which is understandable since it is the schedule,

the overall picture of how the manufacturing of all components is coordinated, that

sets limits on the overall performance of the manufacturing facility. However, there

are often many alternat,ive  ways of building a process plan. Hence. there is a deep

sense in which planning and scheduling can be integrated: they can be rega.rded

as a single optimisation problem. If we can find the optimal way of manufacturing

each component (i.e. find cheapest process plan) while at the same time minimis-

ing the interactions between the plans (usually the province of scheduling) we will

have effectively solved this deeper problem and facilitated the integration. It is this

sense of integration that we shall concent,rate  on in this thesis. However, there are

a number of papers which discuss process plan and schedule integration at a much

higher, managerial, level, e.g. [6S].

There has been very little work on this deeper sense of integration, but that that

has been done is reviewed here.

Chryssolouris et al. [15] regard the allocation of factory resources as a common

element suitable for the integration of process planning and scheduling. However,

they state that process planning and scheduling use quite sepaxate  criteria (tech-

nological constraints and timing considerations respectively) and hence integration

is a matter of viewing the overall problem as one of multi-criteria decision making.

The integration they feel is possible is not as profound as the one sought here.

Most other researchers active in this field take a similar view to that held by the

author. Namely, certain aspect of the planning are separate from scheduling, and do
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use quite different criteria, but the common ground is the objective of minimising

manufacturing costs.

The most common approa.ch  to some form of integration at the cost level is to

generate flexible plans with some decisions left t,o the scheduling stage; that is,

providing some alternat,ives  for the schedule to work with, rather than fixed pla,ns.

The usefulness of t.his sort of approach was recognised as early as 19SO  by Halevi  [44].

Sundaram and Fu [loll  later provided a simple technique in which a small amount

of flexibility wa.s introduced into a set of plans t,o be scheduled. They showed how

a more efficient schedule could then be produced.

Krause and Alt,mann  [67], among others, represent alternative in plans by using t,ree

structures. Alternatives are represented on separate branches of the tree. Tonshoff

et al. [106] use more efficient graph structures instead; after branching has occurred

divergent paths can meet up again at a, la,ter common node. They refer to the

resulting structures as non-linear process plans. They allow more flexibility by

having both OR splits (one of the alternative pa.ths is followed) and AND splits

(both of the pa.ths  are followed but the ordering is not specified). This provides

greater room for manoeuvre at the scheduling stage and results in better schedules.

While the motivations were similar, these researchers have only looked a.t a very

small part of the integrated problem presented in Chapter 7; they only have a small

amount of flexibility in their plans compared with the approach developed in this

thesis. Another major difference is that the technique presented later effectively

does away with a separate scheduling stage.

Khoshnevis and Chen [65] carried out research into the development of a good set of

priority or dispatching rules for use with flexible process plans, a.s a way of further

facilitating integration.

Liang and Dutta [70] have also pointed out the need for a deep integration between

the planning and scheduling problems, but their proposed solution was demonstrated

on a very small simplified problem. It is not clea,r  from their descriptions how well

their method would scale up to the sorts of problems tackled later in this thesis.
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Some years a.go lwa,ta  et al. [60] used bra.nch  and bound search (see Cha,pter  5) to

ta.ckle  scheduling with alternative machines (i.e. some flexibility in the plans) but

wit,11  no alteration in operation orderings. They found good solutions but only for

very small problems. It is highly unlikely that their method can be scaled. Certainly

the experiences of using branch and bound for a complex single plan optimisation

task, described later in Chapter 5, bear this out. Others ha,ve had similarly negative

experiences with branch and bound [88].

The only other piece of work I am aware of tha.t attempts to ha.ndle problems

approaching the complexity of those ta,ckled  in this thesis, is work by Palmer [87],

inspired by earlier versions of the work presented in Chapter 7, and making use

of another stochastic optimisation technique, simulated annealing. Although his

techniques have not been applied to such la.rge  problems as dealt with later, they

do appear promising.

2.7 Summary

This chapter ha.s introduced a number of key topics which have very strong bearing

on the subject matter of this thesis. Process planning was described, as lvere ap-

proaches to computer aided process planning. Optimisation and search were briefly

outlined. The need for taking the cost of a process plan into account while it is being

generated was explained. Recent approaches to generative CAPP which attempt to

do just this were discussed. The role of scheduling was sketched out. The impor-

tance of integrating process planning and scheduling was brought out and then a

review of approaches to this problem was given.

Further related work will be introduced and discussed at appropriate points through-

out the thesis.

These first two chapters have now set the scene for the remainder of this thesis which

describes in detail the technical research which is its contribution.
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Chapter 3

The Plan Space Generator

3.1 Introduction

The new approa.ch  to process planning and scheduling developed in this thesis wa,s

outlined in Chapt,er  1. This cha.pter  describes the plan space generator: that part of

the system used 1 o find the space of all possible process plans for a given component,

Any generative process planning system must have t,he capability to reason in detail

about the parts to be manufactured. Clea.rly  this will involve having access to a rep-

resentation of the properties of and interrelationships between t,he manufacturing

features (holes, slots, pockets . ..) of any given component. The planner would also

need a global view of the work piece as it is transformed from blank to finished com-

ponent. Similarly there must be some method available for modelling the machine

shop. The author developed, in conjunction with Frank Mill and Stephen Warring-

ton [56, 57, 551, a particular feature based part description language, strongly based

on earlier work by Mill [75]. The same method has been extended to model the

machine shop, it is described in Section 3.3. The system described in the following

sections was developed some years ago, it has recently been replaced by a more effi-

cient, but largely functionally equivalent, object oriented system that will be briefly

described at the end of this chapter. The earlier work was done jointly with Frank
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Figure 3.1: Overall approach

Mill and Stephen Warrington. Those aspects which are the author’s contributions

are focused on here. Frank Mill’s work on part representation schemes has alrea,dy

been mentioned, Stephen Warrington worked on the manufacturing knowledge bases

and machine shop data bases. The author’s contribution was largely in developing

the algorithms to manipulate this information, and in devising the representation

schemes for much of the knowledge (e.g. the rule base syntax).

The overall approach used is captured, at a very high level, in Figure 3.1.

Representations of the blank and of the component are compared in order to find

out which component features are to be machined and which, if any, already exist

in the blank. The plan space module generates the complete space of plans which

is searched for the best solution at the optimisation stage.

3.2 Overview

The plan space generation algorithm attempts to break the manufacture of a. compo-

nent down int)o a number of nearly independent steps. The entire space of possible

plans can then be generated by finding all the possible operations to carry out each
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step along  with the ordering constra.ints  which must exist between the steps. Es-

sentia.lly  a. step refers to a finishing operat’ion  on a. single feature or super-feature (a

group of features treated as one due to some network of constraints binding them

together) or a roughing operation on an intermedia.te  feature (defined later). So

each step of the plan has a unique feature, super-fea.ture  or intermediat,e  feature

associated with it. The operations found to manufacture these are described in

terms of [machine/process/tool/setup/cost] combinations. The setup refers to the

orienta.tion  of the workpiece and the cost refers to the machining cost associated

with that operation. Along with this information the planner generates a separate

network representing the partial orderings it has deduced hold between the stages

of the plan.

The simplest way to describe the algorithm in more detail is to sta.rt  with the

highest level structures it builds and manipulates. These aae planning net#n-arks  like

the one shown in Figure 3.2. In common with most generative process planners!

the manufacturing processes a.re trea,ted as material addition operations, wl1erea.s  of

course they actually involve material removal. The overa,ll strategy is to start with

those features deepest in the component and work out towards the surface. This

process is guided by a set of ‘critics’ constantly on the look out for possible feature

interactions, which may result in deferring work on part of the component 1.571 ,

and by high level considerations regarding datums  and such like. Once a, fea.ture

has been chosen, a finishing process to achieve its desired final state is inferred.

The details of this are discussed later. This finishing process leaves an intermediate

feature with various inexact properties, such as a range of possible surface finishes.

This models the fact that most finishing processes can only sensibly be started from

a state with a given range of properties. For instance, it is highly undesirable to

end up grinding down a very rough uneven surface. A roughing process is then

chosen to manufacture the intermediate feature. Remembering that an exhaustive

set of possible manufacturing routes is required, for any given finishing process, any

number of compatible roughing processes may exist. Thus a network like the one

shown in Figure 3.2 is built up, keeping track of the interactions between finishing

and roughing processes for each feature. These networks can be readily extended to
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allow an a,rbitrary  number of sub-finishing and sub-roughing processes, a.nd hence

intermediate features, to be handled. Each route on the network, from sta,rting

conditions to final feature, has its own subsidiary information attached, such as

machining para.meters  and cost. In complex cases it may be desirable t,o weight, the

different routes or to remove certain nodes or connections. It is often found, when

building up the network, that a possible roughing opera.tion  is esa.ctly  the sa.me  as

the finishing operation it is connected to via an intermediate feature. In this case

the roughing node and its connections are removed and a connection ma,de directly

from the starting conditions to the finishing node. This tells us that it, is fea,sible

to machine out the feature using the single process. Various kinds of links between

the sub-networks of different features are built up by the planner.

The output from this process is a large number of interconnected networks like the

one shown in Figure 3.2. A manufacturing plan for the sub-goal described  by the

fragment of network shown is a route from the starting conditions node t,o the goal

conditions node. Implicit in the representa.tion  are functional dependencies between

sub-operations. The algorithm also discovers ordering constraints in the processing

of the various features, intermediate features and super-features. This results in the

output of a pa,rtial  ordering graph like the one shown in Figure 3.3. Each of the

symbols refers to a particular feature, intermediate feature or super-feature.

The system will now be described in detail.

3.3 Feature-based representation

Much of the reasoning needed in process planning is at the symbolic levei and in-

volves the manufacturing features of the component. Because of this, the most

appropriate part description languages for use with CAPP systems are largely sym-

bolic feature based ones. Such a representation should describe the necessary geo-

metric, topological and manufacturing properties of the component. Manufacturing

properties mainly refers to the various required tolerances of the part.
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Finishing
finished on MCN with
PRSS using TOOL
setups {SET}

Roughing - Roughing -
roughed on M2 with P2 roughed on Ml with P3
using T67 setups { 1,3,5 } using T67 setups { 1,3,5,16}

Roughing -
roughed on M6 with Pl
using T61 setups { 1,2,3,5  }

Figure 3.2: Fragment of pIanning network.
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Figure 3.3: Anteriority constraints.

The representat,ion  should be complete in process planning terms. For insta.nce,  it

n1a.y not be necessary to describe the whole geometry and topology of a component

in order to decide how to manufacture it. A complex surface might be represented in

t,erms  of a few pa.rameters,  such as maximum radius of curva.ture, needed to reason

about it. On the other hand, it is almost certain tha,t the interrelationships which

exist between t.he features should be described in full. A component should not be

rega.rded  as a. collection of independent features - tha,t would imply tl1a.t a process

plan is genera.ted  by choosing an operation for the manufacture of each feature in

isolation and then compiling these into a list. In fact, most feature interactions

impose constraints on the shape of the plan.

The representation should be flexible. It should be a simple matter for the user to

add new features or feature properties to the system.

A smooth interface should exist between the manufacturing knowledge base and the

part representation data base, avoiding repetition of information.

The same points apply equally well to the machine shop representation.

A network approach was adopted, as it was thought capable of fulfilling the re-

quirements discussed above. In this scheme a component or blank is described by a
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bina.ry  rela,tiona,l  da,t.abase  where  each entry c0nsist.s  of a. triple of the form:

<entity> <relation> <entity>

An entity will t,ypically  be a feature name, a number: an atom or an uninsta.ntiated

varia.ble.  The technique allows the use of some higher level relations lvhich t,reat  a

triple as a.n entit,y itself and hence allow the possibility of chained relations. This

is usually employed &en an initial relationship needs to be qualified. The method

provides a simple way of representing interactions bet\?reen  features. For example,

if two faces pl and p2 are related by a parallel tolerance, this can be written as:

pl para p2 w i t h t o l  0 . 0 3 .

The following is a. small part of the representation of the simple test. component

shown in Figure 3.4.

h2  isa bl ind-hole .

p5 vexedges  p6.

p7 hasfeat  pkl .

e17 edges p6.

sl comprises ~10.

p5 para p8 w i t h t o l  0 . 0 0 5 .

The feature types u ,:ed in this work were as follows:

0 plane (flat surface)

l through hole

l blind hole

l through slot
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hl

Figure 3.4: Example component

l end slot (step)

l pocket

Components in which the features have simple orthogonal geometric relationships

to each other were used. However, complex blanks, such as castings, out of which

orthoganally related features needed machining, can be handled. Examples of such

components will be shown later.

The whole system was implemented in Edinburgh PROLOG [2] and the relations

are defined as infix operators of the appropriate precedence. The whole network is

thus represented as a PROLOG file listing the individual relations.

The meaning of the individual relationships shown above should be fairly self-

explanatory. Very important relations are ‘isa’, allowing inheritance within the

networks: and ‘hasfeat’, defining where one feature is a sub-feature of another. The

representation is very similar to the semantic networks knowledge representa.tion

technique used widely in AI [9, 1111.  The same method wa,s also used to model the
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machine shop in terms of machine and tool capa.bilities.  Thus parts of machine and

tool descriptions could be aa follows:

drill1 isa drilling-machine.

tool1 isa twist-drill diam 3.

drill1 angutol 1.0 using drilling.

Figure 3.5 shows how, by using this method, the part representation and the ma-

chine shop model integrate in a very simple and natural way. The use of such

a homogeneous description of the basic manufacturing data. simplified the t,ask of

building a manufacturing methods knowledge base which straddles the two area.s.

Indeed it meant, a very flexible and simple interfa.ce  between the knowledge bases

a,nd data bases could be defined. This is discussed in more detail lat,er in the cha.p-

ter. The machine shop model used in most of the work reported here consisted of 12

machines: 2 drilling machines; 2 slab milling machines; 7 vertical milling machines;

and 1 grinding machine. Each of the machines was modelled on a real machine using

data from manufacturers’ catalogues.

3.4 Comparison of blank and component

The representations of the blank and the part must be compared to ascertain what is

to be machined. This is the stage at which the goals of the planner are derived. The

method employed is highly feature oriented and is based on a comparison from each

of six orthogonal directions. Each feature, both from the component and the blank,

is involved in some bina.ry  relation giving its relative orientation. For instance, ‘pl

dvect posx’  refers to the fact that a vector perpendicular to the face pl and pointing

out of it runs in the positive x direction. After unifying the coordinate systems

used to describe the geometry of the blank and the component, this directional

information is used to build up a set of directional surfaces (Dsurfs). For example,

the posy Dsurf is the set of surface features seen by observing the object along
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Figure 3.5: Sample of representation network
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t,he nega.tive  y dir&ion. Corresponding Dsurfs from blank and component a.re

compared. The reason that this is done, and that, Dsurfs are considered at all, is

that,  the part representa.tion  method dicta,tes that all other features are sub-features,

or sub-sub-feat,ures  etc., of some surfa.ce  fea.ture.  If any of the surface fea.tures  needs

machining, that is there is no equivalent fea.ture  on the blank, then it, is assumed that

all of its chain of sub-features will a.lso need machining. If this were not the case the

features would ha.ve to lie within the blank and not be traceable up a ‘hasfeat  chain

to a surfa.ce  feature - geometrically impossible given the representa.tion  scheme. If a

feature is a. sub-feature of one that already exists in the blank, a ma.pping  between

the sub-feature a.nd a corresponding blank sub-feature is looked for. The ma.pping

process uses tolerance informa.tion,  such a,s surface finishes, a.s well as geometric

information. This is because the feature ma,y exist in the roughed state on a. blank

but needs to be finished to produce the required component feature. This may well

be t,he case where the bla,nk is a casting. This comparison method has been found

to be far more efficient than a.n earlier ‘brute force’ method which exhaustively

compa,red a.11 generic feature types in the component and blank.

The simplest type of blank possible would be like the one shown in Figure 3.6.

The posy Dsurf, that is the set of surface features seen by observing from outside

the object and along the negative y direction, for this simple object consists of the

plane ~502. However, for the component shown in Figure 3.4 the corresponding

Dsurf consists of the planes p6 and ~7, the through-slot sl, the pocket pki and the

through-hole hl.

The comparison algorithm is outlined in Figure 3.7. The outcome of this process

is a list of features labelled as ‘mc-features’, that is features in the component

that need machining. The comparison process is not necessary in the later C++

implementation of the system as this is linked directly to a design system where the

designer builds the component starting from a model of the blank. Hence differences

from the blank, i.e. features needed machining, can be automatica.lly  recorded during

the design process. The later implementation is described at the end of this chapter.
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P502

Figure 3.6: Simple blank

Plan Space Generation

The overall architecture of the system is shown in Figure 3.S. The planning process

is controlled by the planning engine which makes use of separate inference engines

for handling fra.mes  and production rules, the mea.ns by which the manufact’uring

knowledge is represented. The work of the planning module is to make use of this

knowledge to discover candidates for, constraints on and interrelationships between

the operations to be used to manufacture the component features. This task involves

reasoning about the part and the capabilities of the machines. Hence the knowledge

bases are used to reason over the integrated networks used to describe t.he blank,

component and machine shop.

A high-level description of the basic plan space generation algorithm, particularly

how it builds and manipulates planning networks like the one shown in Figure 3.2,

has already been give in Section 3.2. Further details will now be given. The planning

networks are represented explicitly using the following prolog data structcres:

sub-net (N ,Ft ,

Ft finished-with <data . . .>

& <data . . .> processed-from Ift

&( Ift roughed-with <data1 . ..>

or Ift roughed-with (data2 . ..>
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Comparison

Build Dsurfs forBuild Dsurfs for
each of 6 orthogonaleach of 6 orthogonal
directions  for blankdirections  for blank
and componentand component

CompareCompare ** Derive features toDerive features to
correspondingcorresponding be machinedbe machined
DsurfsDsurfs (mc-features)(mc-features)

Map ‘top’ planesMap ‘top’ planes Map otherMap other
common  featurescommon  features

Dimension Fuzzy position
match match

Tight  relative
(to other features)
position match

NOTE: This is a JSP hierarchical decomposition algorithm diagram. Such diagrams

are used fairly regularly in this thesis. Read left to right for sequence of routines; *

denotes an iterative process; o denotes a conditional branch.

Figure 3.7: Comparison algorithm
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Figure 3.8: System architecture
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or . . .

net(N,Ft,Sni  & Sn2 & Sn3 &. ..>.

The ‘sub-net’  structure simply lists the binary relationships making up t,ha.t part

of the network emanating from a single finishing node. The ‘net’ structure pulls

together all the subnets corresponding t,o the same feature. The & is a. defined

infix operator. The <data . . . > symbols stands for the information inferred by the

planner and put, into the process nodes. Ft stands for the final feature and Ift

for an intermedia.te  feature. N is instantiated to a number which uniquely labels

the structure. The reasons for this organisation and the details of the contents

of <data . . . > nodes will be made clear in the next section where the ~Jhliller’S

reasoning is described.

The central planning algorithm is outlined in Figure 3.11. The planning cycle starts

with the detection of an unplanned deep-feature which has been labelled at the

comparison stage as needing machining. A deep-feature is simply one with no sub-

fea.tures. This allows ba.ckward  planning from the deepest parts of the component

out to the surface. Referring back to Figure 3.8, the planning engine takes care of

the high level planning, manipulating the planning networks. The planning engine

looks for strong interactions each time a new feature is presented for planning. Such

interactions would include a feature with a very tight parallel tolerance with respect

to some other feature. If a strong interactions is found, using an appropriate rule

base, the feature may well have to be deferred for later planning. For instance, two

or more features with tight parallel tolerances to each other must be finished on

the same setup. Hence they must be planned as a group and the networks built

accordingly. The algorithm employed for this particular type of interaction is shown

in Figure 3.9. It makes use of many parts of the system involved in the core plan

space generation algorithms.
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Deferred  Plan

Build group
of tightly
related features

*

Plan

Find machine
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Kzl

Main
group
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Infer finishing operations  on
this machine  for all members
of group,  ensuring that
(chained) intersection of
(setups]  f @
at any stage

Store final info.
for each feature
in the group

Figure 3.9: Deferred planning
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Figure 3.10: Tagged planes.

Another case ha.ndled  by special purpose a.lgorithms  is that of separate surface pla.nes

ema,nating  from the same intermediate feature. An simple example is shown in

Figure 3.10. Here, in the final component, pl a.nd p2 are separate planes (quite

possibly with different properties such a,s surface finish) broken by the through slot.

However, they lie in the sa.me  plane and would have come from the same intermediate

feature (il in the diagram). Such an intermediate feature is referred to as virtual,

since it does not have such a direct relation to the component feature as in the

standard case. The algorithm used to handle this situation is given below.

1. Collect surface planes tagged as coming from some (virtual) inter-

mediate feature.

2. Merge planes to create the intermediate feature.

3. Find the feature in the tagged group with the tightest surface fin-

ishing tolerance.

4. Backwards plan each individual tagged feature (using the standard

algorithms), but force all to use the roughing operations (on their

common intermediate feature) used by the feature found in 3.
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In t,his case, as in the deferred pla.naing  ca,se,‘  the networks and subnets built up

must be linked appropria.tely  to reflect t’he dependencies inherent in these special

situa,tions.

If there are no strong interactions of this type the planning engine passes control

down to the frame engine. The frame engine manipulates plan schema.s  which are

the highest level static knowledge source used t,o fill up the (data  . . , > nodes. A

simple plan schema is shown below:

mfra.me(l,thru-slot,F,F,

do (rough F) ,

(acons(rough  top of F) ,

act(F roughed-on _ using _ tool _ using -1)

1.

This tells us tha,t in order to find a roughing operation for some through slot, F,

we must look for a rule with an action pa,rt*  ma,tching  the ‘act’ slot. It also tells

us that an anteriority, or ordering, constraint must be laid down: wha,tever  is at

the top of F must be roughed before F is roughed. Some of the schemas  used are

more complicated involving conditional slot contents and more slots. They allow

the description of some important constraints, such as orderings, to be stored in the

knowledge base rather than being embedded in the reasoning software. There are

other, more complex, frames which contain information on how to deduce geometric

properties of a feature or its surroundings, for instance how to deduce what is on

‘top of’ a through slot. In all, more than 50 frames were used in the implemented

system. Once the frame engine has decided on a specific set of information to deduce,

it hands over control to the backward chaining inference engine that handles all the

production rule bases. A simple rule, which covers the basic syntax, is shown below:
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rule(216,mcsel,thru_slot,

i f

current-active-fin(Ft  ,Mcf)

& Mcf min-surf-req  M-s

& Mtype makes thru-slot  using Process

& Mcr isa Mtype

& not current-active-rgh(Ift  ,Mcr)

& Mcr surftol Mtol using Process

& Mtol less M-s

then

Ift roughed-on Mcr using Process).

This rule itself would have been called up in an attempt to prove one of the condi-

tions of a higher level rule related t;o finding a. roughing process. In order to keep

the sea.rch  space a,s small as possible, the ru!e base is doubly part,itioned.  The first

partition relates to the rule context or function, the second to the generic feature

type involved. The rules use some important built, in functions. An example is

‘currentactivefin’ shown above. This function is a call from the inference engine

up to the planning engine in order to find out which sub-net is currently active and

hence which finishing node we are currently building a route from. The interaction

belween the finishing and roughing processes is clearly seen in the rule. The rules

are able to give information on what [machine/process/tool/setups] are suitable for

various operations, how much operations will cost and other manufacturing knowl-

edge related to constraints. Note that many of the rule conditions are simple binary

relations from the part and machine shop representations. Thus the building blocks

of the highly integrated representations shown in Figure 3.5 can be used in a very

natural way, as rule conditions, to provide a simple and powerful method of reason-

ing over the networks. The rule bases cover information on selcting machines and

tools, finding setups and costing machining operations. In all, more than 200 rules

were used in the implemented system.

The various engines also have to deal with more complicated planning involving
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more direct interaction. For instance, the planning of a group of features, with very

tight relative tolera.nces,  must be deferred until the whole group ha.s been found.

As already mentioned, situations like this are spotted by the planning engine and

then dea.lt with by using special case algorithms which ma.ke  use of much of the

machinery of the ma.in  planning algorithm.

As the networks are built up the part representation is updated to reflect the changes

in geometry. An intermediate feature is formed from a finished-featrure (feature on

component) by creating a new feature of the same type from a standard templa.te

and then deriving the intermediates feature’s properties from those of the finished-

feature. Some of the information will be the same for both features (e.g. centre

coordinates for a hole) while much will be slightly different (e.g. the radius of an

intermediate hole will be slightly less than for the corresponding finished-feature

hole; the surface finish of the intermedia.te  feat.ure  will usually be greater (higher

tolerance) than for the finished-feature). The exact transformation of the geometric,

a.nd other, properties will depend on the [machine/tool/process] combina.tion  used to

finish the feature. After the roughing operations have been found the intermediate

feature is ‘filled in’ in the model.

To summarise, the plamiing  algorithm attempts to break the manufacture of the

component down into a number of nearly independent stages. It does this by look-

ing out for possible interactions and then using special purpose algorithms to deal

with them. This is based on Sacerdoti’s idea of critics [97].  The entire space of

possible plans can then be generated by finding all the possible operations to carry

out each step along with the ordering constraints which must exist, between the

steps. Essentially a step refers to a finishing operation on a single feature or a

super-feature (a group of features treated as one due to some network of constraints

binding them together) or a roughing operation on an intermediate feature. So each

step of the plan has a unique feature , super-feature or intermediate feature associ-

ated with it. The operations found to manufacture these are described in terms of

[machine/process/tool/setup/cost] combinations. The setup refers to the orienta-

tion of the workpiece and the cost refers to the machining cost associated with that
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Figure 3.11: Central plan space generation algorithm
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operation. Along wit,11  this information the planner genera.tes  a sepa.rate network

representing the partial orderings it has deduced hold between the steps of the plan.

Such a network is shown in Figure 3.3.

A sample of components modelled using the fea,ture-based  representation la.nguage

and successfully handled by the plan spac.e  generator are shown in Figure 3.12. Some

are specially designed pathological examples with nested features and ma.ny inter-

feature constraints, these were used to stretch the algorithms and test the feasibility

of the approach. Others were actual components [e.g. the toggle clamp shown in

the Figure) manufactured by various companies. Graham Pedley was responsible

for modelling most of the real components [go]. A variety of other components not,

shown were also used. The level of complexity of components shown in the Figure

is representative.

The output of the plan space generator, which acts as the interface to the GA

optimisation module, is briefly described in Appendix A.

3.6 Later Object-oriented implementation

The part representations used in the earlier representation system are quite verbose

and hand coding is very tedious. This means that automatic generation is a necessity

for a commercial implementation. Feature information could either be extracted

from a solid model of the component or, more promisingly, be generated directly

by a feature based design system. Work in that direction may encourage a tighter

integration of a design and planning system.

This approach was taken by a follow-up SERC project to the one in which the bulk

of the work reported here was done. A later C++ implemetation of the plan space

generator is linked directly to a feature based design system [30]. This is a cla,ss based

object oriented version. The component model is passed down by the design-system

along with information flagging potential problems with tool access and so on. These

pieces of information are derived from the solids model maintained by the design
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system. The whole solids model can be pa.ssed  down to the plan space generatol

potentially allowing advanced geometric rea,souing. Fea.tures, ma.chines,  processes,

and tools, a.re now represented in explicit cla.ss hierarchies. The core mecha.nism

for process, ma.chine,  tool and setup selection is as follows. Fea.ture  objects ha,ve a.

list of possible manufacturing processes associated with them; process obje&  are

interroga.ted  by the fea,ture  objects to see they if they are suitable. Process object

have a list of machine types usually capable of performing them; procend  objects

interrogate the machine class to find actual machines that can be used. In a similar

way the tools and possible setups for a given [feature/process/machine] combination

are found.

A sketch of the class hierachies used in this version of the syst,em  is shown in Fig-

ure 3.13. Eac.h  class defines objects (fea.tures,  machines, tools etc.) in terms of

a set, of members. Some of these a.re simple nun1erica.l  fields holding t,he value of

a tolerance or a dimension or some such. Some are lists of, for insta,nce,  possible

manufacturing processes that can be used for a given feature type. Some are com-

plex functions tha.t  interrogate other cla.ss objects and do a job such as computing

a manufacturing cost, or testing the viability of some manufacturing process for

a particular feature on the component. In this way, the manufacturing da.ta and

knowledge is represented in a more implicit and less user-friendly way t,h,n in the

data-bases and rule-bases of the earlier implementation. The advantages a.re flexibil-

ity - particular knowledge representation formalisms do not have to be adhered to,

algorithms encapsulating manufacturing knowledge are implemented in raw C++,

and speed - the C++ version is at least two orders of magnitudes faster than the

PROLOG implementation. The disadvantage is that it is harder for a potential user

of the system to model their own manufacturing facility and methods.

The core algorithm of the later implementation is shown below. It can be seen that

this is not quite the same as the earlier algorithm, but it is nearly functionally iden-

tical. Again intermediate features are created from features (or other intermediate

features) according to the last manufacturing operation to be performed on the par-

ent feature. This allows the generation of finished-feature manufacturing routes of
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Figure 3.13: Class hierarchies.
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.
a,ny length, containing any number of finishing and roughing operations. The only

constraint in choosing the next opera.tion,  is that it must make some progress over

the last operation. Since we are backwards pla,nning,  this means it must lea,ve an

int,ermediate  feature which is closer to a tot.ally  ‘filled-in’ (or NULL) feature than

the last one. The ‘hasfeat’ relation of the earlier implementation has here being

replaced with explicit ‘parent’ and ‘child’ relat,ionships.  Plan-Space0

1. Read in component and blank models, a list of features to be man-

ufactured (FeaturesToBeManufactured)  is passed in as part of this;

read in machine shop model.

2. i = 0, pass-flag = 1.

3. Ft = FeaturesToBeManufactured[i], If at end of list Go to 16, Else

If Ft has not been processed and is not deferred and, If pass_flag=2,

Go to 4, Else if Ft is a deep feature Go to 4. Else Go to 14.

4. If Ft interacts strongly with other features (according to any of the

special purpose tests), append it to deferredlist, Go to 14. Else Go

to 5.

5. Unless Ft is an intermediate feature, create a dataNode object for

storing manufacturing information. j= 0.

6. Find the jth possible Process in Ft’s list of potential manufacturing

processes. If at end of list, Go to 14, Else k = 0.

7. Find the kth possible machine from the list attached to the Process

found in 6. If at end of list Go to 13, Else If this machine is generally

capable of the job Go to 8, Else Go to 12.

8. If a tool can be found for the current Feature/Machine/Process

combination, Go to 9, Else Go to 12.

9. If the resulting Feature/Machine/Process/Tool combination can be

costed Go to 10, Else Go to 12.
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10. Create a SubNode to the current dataNode  (or current SubNode

if Ft is an intermediate feature) and store in it the resulting Fea-

ture/Machine/Process/Tool/Cost information.

11. Generate an intermediate feature (Ift) from current feature (Ft),

Unless Ift is NULL (chain of operations complete), build next link

in chain by (Recursively) setting Ft=Ift and Go to 4.

12. (Unwind recursion one level), k = k + 1, Go to 7.

13. j = j + 1, Go to 6.

14. If Ft has any unplanned ‘parents’, set Ft to next one and Go to 4,

else Go to 15.

15. i = i + 1, Go to 3.

16. pass-flag=2.

17. Plan deferredlist.

18. Exit.

To give an idea of the complexity of the classes, part of the ManuFeature class
(describing features) is shown. Many of the members are complex functions.

class ManufFeature  : public Thing{

public:

HanufFeature(int,  char*, int );

Manuffeatureo;

-HanufFeatureO;

virtual void displayO<> //display to screen

void setHadefl(int );

void setIntmfl(int  );

void set-FtIame(char+  );

void set-FtTypa(char*  );

char *give-FtTypeO;

void sat-position(double,  double, double );

void set-orientation(doubla,  double, doubia );

void setFtId(int );

void set-isDeep(int  );
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void set-isDeferred(int  );

void set-parents(char**  );

void set-children(char**  );

int give-isI4adeo;

int give_isIntermediateO;

int give_isDeferredO;

char *give-ftBame(1;

int FtIdO;

int give_isDeepO;

char *give-childcint  );

char *give-parentcint  );

void set-chptcint ,HanufFeature* );

void set-pntptcint  ,HanufFeature* 1;

ManufFeature  *give-pntptcint  1;

char *give-process(int  );

virtual int SinteractsO{return  0;);

int *give-setupsO;

virtual int mcntol-fit(Machine*  ){return 0;);

virtual int proctol-fits(Hachine*  ,Process* ){return  0;);

virtual int tool-tol-fits(Tool*  ){return 0;);

virtual float cost(Machinet  ,Process*  ,Tool+ ,int ){return  0;)

virtual int setups(Tool*  ){return 0;);

virtual float give-surfFinO{return  0;);

virtual float give-minsurfFin()Creturn  0;);

protected:

int isgade; //already planned flag

int isDeep; // is deep feature flag

int isIntermediate; // is intermediate feature flag

char +ftBame; // name

char *ftType; // type

double x; //coordinates

double y;

double z;

double yaw; // orientation

double pitch;

double roll;

int featureId; // ID

char *manProcsCGl; // possible manf. processes

int isDeferred; // deferred planning flag

char *DefType; // why deferred

char *children[l2]; // list of child features (has-feat)

ManufFeature  *chpt[12]; // pointers to these

char *parents[12]; // likewise parent features

ManufFeature  *prnpt[lZl;

int *Sups; // list of setup codes

3;
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3.7 Research issues and Assumptions made

The whole methodology described is crucia.lly dependent on being a.ble to brea,k  the

manufacturing process down into nearly independent stages so that an exha,ustive

set of possible plans can be implicitly generated in polynomial time. Questions of

stability, clamping, fixturing and tool access have not been fully ta.ckled  yet. In

pa.rticular  their impact on the methodology needs to be thoroughly investigated, a

more hierarchical approa.ch  may well be needed.

At this point it, it useful to draw together the basic underlying assumptions made

throughout. They are:

l The tool selection aspect of the problem is ignored. Tool change costs are

effectively zero.

l Machine transfer cost,s  a.re ignored. The physical la.yout  of the job-shop is not.

taken into account.

l It is assumed that manufacturing requires at most one roughing and one fin-

ishing operation per feature. In principle it would be straightforward to lift

this simplifying assumption.

l Selection of fixtures, and the impact of clamping and fixturing issues on the

feasibility of using a particular machine on any given feature, is ignored.

l Tool access checking has not yet been integrated into the system.

l Complex planning issues relating to geometrically interacting features, thin

walls, and the like are not dealt with.

Some of these issues would be straightforward to incorporate (tool costs and ma-

chine transfers), while the rest are very challenging problems in automated process

planning. However, complex planning decisions could be made manually. Such man-

ual inputs to the system would impose constraints on the plan space to be searched

by the GA, in terms of machine choices for particular features or combinations of
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featlures,  operation orderings and SO on. Such a semi-automated approach should fit

fa.irly comfortably into the general fra,mework  presented in this thesis.

3.8 Summary

This chapter has described a set of algorithms used to generate an exhaustive set

of process plans given a feature-based description of the desired component and the

blank, along with a model of the machine shop. Two implementations of this p1a.n

space genera.tor  were discussed, one in PROLOG and one in C++. The p!an spa,ce

generated consists of interconnected networks describing dependencies between the

operations in a plan. An exhaustive set of alternative machine/setup combinations

for each operation are listed. A separate network holds all the ordering constraints

between the operations. These constraints are generated by the planner. This

space is intended to be searched by a.n optimisa.tion  technique to find low cost pla.ns

according to some realistic criteria. This a.spect  of the research is discussed in the

following chapters. Finally, the assumptions made in this work were drawn together

and made explicit.


