10 research outputs found

    Clock-dependent chromatin topology modulates circadian transcription and behavior.

    Get PDF
    The circadian clock in animals orchestrates widespread oscillatory gene expression programs, which underlie 24-h rhythms in behavior and physiology. Several studies have shown the possible roles of transcription factors and chromatin marks in controlling cyclic gene expression. However, how daily active enhancers modulate rhythmic gene transcription in mammalian tissues is not known. Using circular chromosome conformation capture (4C) combined with sequencing (4C-seq), we discovered oscillatory promoter-enhancer interactions along the 24-h cycle in the mouse liver and kidney. Rhythms in chromatin interactions were abolished in arrhythmic <i>Bmal1</i> knockout mice. Deleting a contacted intronic enhancer element in the <i>Cryptochrome 1</i> ( <i>Cry1</i> ) gene was sufficient to compromise the rhythmic chromatin contacts in tissues. Moreover, the deletion reduced the daily dynamics of <i>Cry1</i> transcriptional burst frequency and, remarkably, shortened the circadian period of locomotor activity rhythms. Our results establish oscillating and clock-controlled promoter-enhancer looping as a regulatory layer underlying circadian transcription and behavior

    Peri-operative red blood cell transfusion in neonates and infants: NEonate and Children audiT of Anaesthesia pRactice IN Europe: A prospective European multicentre observational study

    Get PDF
    BACKGROUND: Little is known about current clinical practice concerning peri-operative red blood cell transfusion in neonates and small infants. Guidelines suggest transfusions based on haemoglobin thresholds ranging from 8.5 to 12 g dl-1, distinguishing between children from birth to day 7 (week 1), from day 8 to day 14 (week 2) or from day 15 (≥week 3) onwards. OBJECTIVE: To observe peri-operative red blood cell transfusion practice according to guidelines in relation to patient outcome. DESIGN: A multicentre observational study. SETTING: The NEonate-Children sTudy of Anaesthesia pRactice IN Europe (NECTARINE) trial recruited patients up to 60 weeks' postmenstrual age undergoing anaesthesia for surgical or diagnostic procedures from 165 centres in 31 European countries between March 2016 and January 2017. PATIENTS: The data included 5609 patients undergoing 6542 procedures. Inclusion criteria was a peri-operative red blood cell transfusion. MAIN OUTCOME MEASURES: The primary endpoint was the haemoglobin level triggering a transfusion for neonates in week 1, week 2 and week 3. Secondary endpoints were transfusion volumes, 'delta haemoglobin' (preprocedure - transfusion-triggering) and 30-day and 90-day morbidity and mortality. RESULTS: Peri-operative red blood cell transfusions were recorded during 447 procedures (6.9%). The median haemoglobin levels triggering a transfusion were 9.6 [IQR 8.7 to 10.9] g dl-1 for neonates in week 1, 9.6 [7.7 to 10.4] g dl-1 in week 2 and 8.0 [7.3 to 9.0] g dl-1 in week 3. The median transfusion volume was 17.1 [11.1 to 26.4] ml kg-1 with a median delta haemoglobin of 1.8 [0.0 to 3.6] g dl-1. Thirty-day morbidity was 47.8% with an overall mortality of 11.3%. CONCLUSIONS: Results indicate lower transfusion-triggering haemoglobin thresholds in clinical practice than suggested by current guidelines. The high morbidity and mortality of this NECTARINE sub-cohort calls for investigative action and evidence-based guidelines addressing peri-operative red blood cell transfusions strategies. TRIAL REGISTRATION: ClinicalTrials.gov, identifier: NCT02350348

    Role of early activity in neuronal migration

    No full text
    The migration of cortical neuron subtypes is spatially and temporally coordinated by variety of cell intrinsic and extrinsic cues. Among cell-extrinsic cues, GABA, glutamate as well as neuromodulators such as serotonin have been shown to regulate the migration of different subtypes of neurons, including interneurons (INs) and pyramidal neurons (PNs). To further investigate the role of early activity in neuronal migration, I used an in vitro optogenetic and an in vivo chemogenetic approaches in order to manipulate early activity during development. I found that increased calcium transients in migrating cortical neurons could act as a “stop signal” that promotes differentiation. The mechanisms allowing migrating neurons to gradually increase calcium transient frequency during migration could be due to increased expression of receptors and voltage-gated ions. This would render migrating cortical neurons more responsive to cell-extrinsic network activity and trigger calcium-dependent down-stream transcriptional cascades instructing terminal differentiation

    Alpha2-adrenergic receptor activation regulates cortical interneuron migration

    No full text
    Monoamines such as serotonin and dopamine have been shown to regulate cortical interneuron migration but very little is known regarding noradrenaline. Similarly to other monoamines, noradrenaline is detected during embryonic cortical development and adrenergic receptors are expressed in transient embryonic zones of the pallium that contain migrating neurons. Evidence of a functional role for the adrenergic system in interneuron migration is lacking. In this study we first investigated the expression pattern of adrenergic receptors in mouse cortical interneuron subtypes preferentially derived from the caudal ganglionic eminences, and found that they expressed different subtypes of adrenergic receptors. To directly monitor the effects of adrenergic receptor stimulation on interneuron migration we used time-lapse recordings in cortical slices and observed that alpha2 adrenergic receptors (adra2) receptor activation inhibits the migration of cortical interneurons in a concentration-dependent and reversible manner. Furthermore, we observed that following adra2 activation the directionality of migrating interneurons was significantly modified, suggesting that adra2 stimulation could modulate their responsiveness to guidance cues. Finally the distribution of cortical interneurons was altered in vivo in adra2a/2c-knockout mice. These results support the general hypothesis that adrenergic dysregulation occurring during embryonic development alters cellular processes involved in the formation of cortical circuits

    Transient Cell-intrinsic Activity Regulates the Migration and Laminar Positioning of Cortical Projection Neurons

    No full text
    Neocortical microcircuits are built during development and require the coordinated assembly of excitatory glutamatergic projection neurons (PNs) into functional networks. Neuronal migration is an essential step in this process. In addition to cell-intrinsic mechanisms, external cues including neurotransmitters regulate cortical neuron migration, suggesting that early activity could influence this process. Here, we aimed to investigate the role of cell-intrinsic activity in migrating PNs in vivo using a designer receptor exclusively activated by a designer drug (DREADD) chemogenetic approach. In utero electroporation was used to specifically express the human M3 muscarinic cholinergic Gq-coupled receptor (hM3Dq) in PNs and calcium activity, migratory dynamics, gene expression, and laminar positioning of PNs were assessed following embryonic DREADD activation. We found that transient embryonic DREADD activation induced premature branching and transcriptional changes in migrating PNs leading to a persistent laminar mispositioning of superficial layer PNs into deep cortical layers without affecting expression of layer-specific molecular identity markers. In addition, live imaging approaches indicated that embryonic DREADD activation increased calcium transients in migrating PNs and altered their migratory dynamics by increasing their pausing time. Taken together, these results support the idea that increased cell-intrinsic activity during migration acts as a stop signal for migrating cortical PNs

    Transient Cell-intrinsic Activity Regulates the Migration and Laminar Positioning of Cortical Projection Neurons

    No full text
    Neocortical microcircuits are built during development and require the coordinated assembly of excitatory glutamatergic projection neurons (PNs) into functional networks. Neuronal migration is an essential step in this process. In addition to cell-intrinsic mechanisms, external cues including neurotransmitters regulate cortical neuron migration, suggesting that early activity could influence this process. Here, we aimed to investigate the role of cell-intrinsic activity in migrating PNs in vivo using a designer receptor exclusively activated by a designer drug (DREADD) chemogenetic approach. In utero electroporation was used to specifically express the human M3 muscarinic cholinergic Gq-coupled receptor (hM3Dq) in PNs and calcium activity, migratory dynamics, gene expression, and laminar positioning of PNs were assessed following embryonic DREADD activation. We found that transient embryonic DREADD activation induced premature branching and transcriptional changes in migrating PNs leading to a persistent laminar mispositioning of superficial layer PNs into deep cortical layers without affecting expression of layer-specific molecular identity markers. In addition, live imaging approaches indicated that embryonic DREADD activation increased calcium transients in migrating PNs and altered their migratory dynamics by increasing their pausing time. Taken together, these results support the idea that increased cell-intrinsic activity during migration acts as a stop signal for migrating cortical PNs

    Serotonin receptor 3A controls interneuron migration into the neocortex

    Get PDF
    Neuronal excitability has been shown to control the migration and cortical integration of reelin-expressing cortical interneurons (INs) arising from the caudal ganglionic eminence (CGE), supporting the possibility that neurotransmitters could regulate this process. Here we show that the ionotropic serotonin receptor 3A (5-HT(3A)R) is specifically expressed in CGE-derived migrating interneurons and upregulated while they invade the developing cortex. Functional investigations using calcium imaging, electrophysiological recordings and migration assays indicate that CGE-derived INs increase their response to 5-HT(3A)R activation during the late phase of cortical plate invasion. Using genetic loss-of-function approaches and in vivo grafts, we further demonstrate that the 5-HT(3A)R is cell autonomously required for the migration and proper positioning of reelin-expressing CGE-derived INs in the neocortex. Our findings reveal a requirement for a serotonin receptor in controlling the migration and laminar positioning of a specific subtype of cortical IN

    Morbidity and mortality after anaesthesia in early life: results of the European prospective multicentre observational study, neonate and children audit of anaesthesia practice in Europe (NECTARINE)

    No full text
    Background: Neonates and infants requiring anaesthesia are at risk of physiological instability and complications, but triggers for peri-anaesthetic interventions and associations with subsequent outcome are unknown. Methods: This prospective, observational study recruited patients up to 60 weeks' postmenstrual age undergoing anaesthesia for surgical or diagnostic procedures from 165 centres in 31 European countries between March 2016 and January 2017. The primary aim was to identify thresholds of pre-determined physiological variables that triggered a medical intervention. The secondary aims were to evaluate morbidities, mortality at 30 and 90 days, or both, and associations with critical events. Results: Infants (n=5609) born at mean (standard deviation [sd]) 36.2 (4.4) weeks postmenstrual age (35.7% preterm) underwent 6542 procedures within 63 (48) days of birth. Critical event(s) requiring intervention occurred in 35.2% of cases, mainly hypotension (>30% decrease in blood pressure) or reduced oxygenation (SpO2 <85%). Postmenstrual age influenced the incidence and thresholds for intervention. Risk of critical events was increased by prior neonatal medical conditions, congenital anomalies, or both (relative risk [RR]=1.16; 95% confidence interval [CI], 1.04-1.28) and in those requiring preoperative intensive support (RR=1.27; 95% CI, 1.15-1.41). Additional complications occurred in 16.3% of patients by 30 days, and overall 90-day mortality was 3.2% (95% CI, 2.7-3.7%). Co-occurrence of intraoperative hypotension, hypoxaemia, and anaemia was associated with increased risk of morbidity (RR=3.56; 95% CI, 1.64-7.71) and mortality (RR=19.80; 95% CI, 5.87-66.7). Conclusions: Variability in physiological thresholds that triggered an intervention, and the impact of poor tissue oxygenation on patient's outcome, highlight the need for more standardised perioperative management guidelines for neonates and infants

    Difficult tracheal intubation in neonates and infants. NEonate and Children audiT of Anaesthesia pRactice IN Europe (NECTARINE): a prospective European multicentre observational study

    No full text
    International audienceBackground: Neonates and infants are susceptible to hypoxaemia in the perioperative period. The aim of this study was to analyse interventions related to anaesthesia tracheal intubations in this European cohort and identify their clinical consequences.Methods: We performed a secondary analysis of tracheal intubations of the European multicentre observational trial (NEonate and Children audiT of Anaesthesia pRactice IN Europe [NECTARINE]) in neonates and small infants with difficult tracheal intubation. The primary endpoint was the incidence of difficult intubation and the related complications. The secondary endpoints were the risk factors for severe hypoxaemia attributed to difficult airway management, and 30 and 90 day outcomes.Results: Tracheal intubation was planned in 4683 procedures. Difficult tracheal intubation, defined as two failed attempts of direct laryngoscopy, occurred in 266 children (271 procedures) with an incidence (95% confidence interval [CI]) of 5.8% (95% CI, 5.1-6.5). Bradycardia occurred in 8% of the cases with difficult intubation, whereas a significant decrease in oxygen saturation (SpO2<90% for 60 s) was reported in 40%. No associated risk factors could be identified among co-morbidities, surgical, or anaesthesia management. Using propensity scoring to adjust for confounders, difficult anaesthesia tracheal intubation did not lead to an increase in 30 and 90 day morbidity or mortality.Conclusions: The results of the present study demonstrate a high incidence of difficult tracheal intubation in children less than 60 weeks post-conceptual age commonly resulting in severe hypoxaemia. Reassuringly, the morbidity and mortality at 30 and 90 days was not increased by the occurrence of a difficult intubation event
    corecore