1,618 research outputs found

    On-Orbit Propulsion OMS/RCS

    Get PDF
    This slide presentation reviews the Space Shuttle's On-Orbit Propulsion systems: the Orbital Maneuvering System (OMS) and the Reaction Control System (RCS). The functions of each of the systems is described, and the diagrams of the systems are presented. The OMS/RCS thruster is detailed and a trade study comparison of non-toxic propellants is presented

    The pebbling threshold of the square of cliques

    Get PDF
    AbstractGiven an initial configuration of pebbles on a graph, one can move pebbles in pairs along edges, at the cost of one of the pebbles moved, with the objective of reaching a specified target vertex. The pebbling number of a graph is the minimum number of pebbles so that every configuration of that many pebbles can reach any chosen target. The pebbling threshold of a sequence of graphs is roughly the number of pebbles so that almost every (resp. almost no) configuration of asymptotically more (resp. fewer) pebbles can reach any chosen target. In this paper we find the pebbling threshold of the sequence of squares of cliques, improving upon an earlier result of Boyle and verifying an important instance of a probabilistic version of Graham's product conjecture

    Analysis of fluid/mechanical systems using EASY5

    Get PDF
    This paper illustrates how the use of a general analysis package can simplify modeling and analyzing fluid/mechanical systems. One such package is EASY5, a Boeing Computer Services product. The basic transmission line equations for modeling piped fluid systems are presented, as well as methods of incorporating these equations into the EASY5 environment. The paper describes how this analysis tool has been used to model several fluid subsystems of the Space Shuttle Orbiter

    Motion of glossy objects does not promote separation of lighting and surface colour

    Get PDF
    The surface properties of an object, such as texture, glossiness or colour, provide important cues to its identity. However, the actual visual stimulus received by the eye is determined by both the properties of the object and the illumination. We tested whether operational colour constancy for glossy objects (the ability to distinguish changes in spectral reflectance of the object, from changes in the spectrum of the illumination) was affected by rotational motion of either the object or the light source. The different chromatic and geometric properties of the specular and diffuse reflections provide the basis for this discrimination, and we systematically varied specularity to control the available information. Observers viewed animations of isolated objects undergoing either lighting or surface-based spectral transformations accompanied by motion. By varying the axis of rotation, and surface patterning or geometry, we manipulated: (i) motion-related information about the scene, (ii) relative motion between the surface patterning and the specular reflection of the lighting, and (iii) image disruption caused by this motion. Despite large individual differences in performance with static stimuli, motion manipulations neither improved nor degraded performance. As motion significantly disrupts frameby-frame low-level image statistics, we infer that operational constancy depends on a high-level scene interpretation, which is maintained in all condition

    Кераміка для техніки

    Get PDF
    The benthic invertebrates fauna of most of the saline lakes of the Sud Lipez region (Bolivia, Altiplano) has been until now quite unstudied. Samples collected during an extensive survey of 12 lakes and two small inflow rivers allow a first list of the main macroinvertebrates living in the biotopes. The heterogeneous nature of these saline lakes with their freshwater springs and phreatic inflows offers a variety of habitats to macroinvertebrates. The benthic fauna in lakes with salinity > 10 g l-1 is not so low in density but includes few species and is dominated by Orthocladinae and Podonominae larvae. In contrast, the freshwater springs and inflows are colonized by a diverse fauna with a mixture of both freshwater and saline taxa, but dominated by Elmidae and Amphipoda. The lakes are quite isolated and, apart from some cosmopolitan organisms, their fauna can be quite distinctive. (Résumé d'auteur

    The combined influence of the local environment andregional enrichment on bird species richness

    Get PDF
    It is generally accepted that local species richness at a site reflects the combined influence of local and regional processes. However, most empirical studies evaluate the influence of either local environmental variables or regional enrichment but not both simultaneously. Here we demonstrate the importance of combining these processes to understand continental scale richness patterns in breeding birds. We show that neither regional enrichment nor the local environment in isolation is sufficient to characterize observed patterns of species richness. Combining both sets of variables into a single model results in improved model fit and the removal of residual spatial autocorrelation. At short time scales local processes are most important for determining local richness, but as the time scale of analysis increases regional enrichment becomes increasingly important. These results emphasize the need for increased integration of multiple scales of processes into models of species richness

    Ecological Correlates of Geographic Range Occupancy in North American Birds

    Get PDF
    The degree to which a species is predictably encountered within its range varies 36 tremendously across species. Understanding why some species occur less frequently within their 37 range than others has important consequences for conservation and for range map based analyses 38 of ecological patterns. We examined whether patterns in geographical range occupancy can be 39 explained by species level traits

    Challenges in the Application of Geometric Constraint Models

    Get PDF
    Discerning the processes influencing geographic patterns of species richness remains one of the central goals of modern ecology. Traditional approaches to exploring these patterns have focused on environmental and ecological correlates of observed species richness. Recently, some have suggested these approaches suffered from the lack of an appropriate null model that accounts for species’ ranges being constrained to occur within a bounded domain. Proponents of these null geometric constraint models (GCMs), and the mid-domain effect these models produce, argue their utility in identifying meaningful gradients in species richness. This idea has generated substantial debate. Here we discuss what we believe are the three major challenges in the application of GCMs. First, we argue there are actually two equally valid null models for the random placement of species ranges within a domain, one of which actually predicts a uniform distribution of species richness. Second, we highlight the numerous decisions that must be made to implement a GCM that lead to marked differences in the predictions of the null model. Finally, we discuss challenges in evaluating the importance of GCMs once they have been implemented

    Thermodynamic Vent System for an On-Orbit Cryogenic Reaction Control Engine

    Get PDF
    A report discusses a cryogenic reaction control system (RCS) that integrates a Joule-Thompson (JT) device (expansion valve) and thermodynamic vent system (TVS) with a cryogenic distribution system to allow fine control of the propellant quality (subcooled liquid) during operation of the device. It enables zero-venting when coupled with an RCS engine. The proper attachment locations and sizing of the orifice are required with the propellant distribution line to facilitate line conditioning. During operations, system instrumentation was strategically installed along the distribution/TVS line assembly, and temperature control bands were identified. A sub-scale run tank, full-scale distribution line, open-loop TVS, and a combination of procured and custom-fabricated cryogenic components were used in the cryogenic RCS build-up. Simulated on-orbit activation and thruster firing profiles were performed to quantify system heat gain and evaluate the TVS s capability to maintain the required propellant conditions at the inlet to the engine valves. Test data determined that a small control valve, such as a piezoelectric, is optimal to provide continuously the required thermal control. The data obtained from testing has also assisted with the development of fluid and thermal models of an RCS to refine integrated cryogenic propulsion system designs. This system allows a liquid oxygenbased main propulsion and reaction control system for a spacecraft, which improves performance, safety, and cost over conventional hypergolic systems due to higher performance, use of nontoxic propellants, potential for integration with life support and power subsystems, and compatibility with in-situ produced propellants

    Advanced Development of a Compact 5-15 lbf Lox/Methane Thruster for an Integrated Reaction Control and Main Engine Propulsion System

    Get PDF
    This paper describes the advanced development and testing of a compact 5 to 15 lbf LOX/LCH4 thruster for a pressure-fed integrated main engine and RCS propulsion system to be used on a spacecraft "vertical" test bed (VTB). The ability of the RCS thruster and the main engine to operate off the same propellant supply in zero-g reduces mass and improves mission flexibility. This compact RCS engine incorporates several features to dramatically reduce mass and parts count, to ease manufacturing, and to maintain acceptable performance given that specific impulse (Isp) is not the driver. For example, radial injection holes placed on the chamber body for easier drilling, and high temperature Haynes 230 were selected for the chamber over other more expensive options. The valve inlets are rotatable before welding allowing different orientations for vehicle integration. In addition, the engine design effort selected a coil-on-plug ignition system which integrates a relay and coil with the plug electrode, and moves some exciter electronics to avionics driver board. The engine injector design has small dribble volumes to target minimum pulse widths of 20 msec. and an efficient minimum impulse bit of less than 0.05 lbf-sec. The propellants, oxygen and methane, were chosen because together they are a non-toxic, Mars-forward, high density, space storable, and high performance propellant combination that is capable of pressure-fed and pump-fed configurations and integration with life support and power subsystems. This paper will present the results of the advanced development testing to date of the RCS thruster and the integration with a vehicle propulsion system
    corecore