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ABSTRACT 

Discerning the processes influencing geographic patterns of species richness remains one 

of the central goals of modern ecology. Traditional approaches to exploring these patterns have 

focused on environmental and ecological correlates of observed species richness. Recently, some 30 

have suggested these approaches suffered from the lack of an appropriate null model that 

accounts for species’ ranges being constrained to occur within a bounded domain.  Proponents of 

these null geometric constraint models (GCMs), and the mid-domain effect these models 

produce, argue their utility in identifying meaningful gradients in species richness. This idea has 

generated substantial debate. Here we discuss what we believe are the three major challenges in 35 

the application of GCMs. First, we argue there are actually two equally valid null models for the 

random placement of species ranges within a domain, one of which actually predicts a uniform 

distribution of species richness. Second, we highlight the numerous decisions that must be made 

to implement a GCM that lead to marked differences in the predictions of the null model. 

Finally, we discuss challenges in evaluating the importance of GCMs once they have been 40 

implemented. 

 

INTRODUCTION 

In short, the recent emphasis on the need to evaluate perceived patterns in 
community structure against null hypotheses is – as seen with hindsight – 45 
overdue. But legitimate enthusiasm for sound methodology must go hand 
in hand with the realization that null hypotheses in ecology, as elsewhere, 
depend on null models, and that all models make assumptions. If these 
assumptions are not appropriate, or create systematic biases, no amount 
of mathematical and statistical precision will produce biologically valid 50 
answers. – Harvey, Colwell, Silvertown, and May (1983) 
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The application of null models has a controversial history in ecology (Gotelli & Graves, 

1996). One of the most recent of these debates centers on the mid-domain effect and geometric 

constraint models (GCMs, e.g. Cowell et al., 2005; Hawkins et al., 2005; Zapata et al., 2005). 55 

These null models generate patterns of species richness in the absence of geographical gradients 

in ecological processes that affect richness, taking into account the naturally restricted area in 

which species can occur. In general GCMs produce a central peak in species richness when 

species ranges are randomly placed within a bounded domain, and it has been argued that these 

stochastic models can in part explain such classic ecological patterns as the latitudinal gradient in 60 

species richness (Colwell & Hurtt, 1994; Willig & Lyons, 1998; Colwell & Lees, 2000).  

In general, null models are designed to determine if the observed pattern differs from 

expectations in the absence of some important process (Harvey et al., 1983; Gotelli & Graves, 

1996). In the case of GCMs, this is actually a large group of processes – all non-random 

processes predicted to generate gradients in species richness (Colwell & Hurtt, 1994; Colwell & 65 

Lees, 2000; Colwell et al., 2004). Having decided which processes to exclude, the challenge is to 

design a procedure that will produce the pattern anticipated in the absence of those processes. 

However, a single best choice of procedure is not always obvious (Gotelli, 2000) making 

inferences from this type of approach more difficult. Here we suggest that at the present time 

GCMs suffer from three challenges in this regard: 1) uncertainty regarding the basic mode of 70 

random range placement and the consequent null pattern of richness that would be expected (i.e., 

a mid-domain peak or uniform richness) in the absence of the identified processes; 2) uncertainty 

about how to generate the null pattern, even when the basic mode of range placement is agreed 

upon; and 3) uncertainty regarding how to best evaluate the importance of GCMs in explaining 

empirical richness patterns.  75 
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HOW SHOULD RANGES BE RANDOMLY PLACED IN THE ABSENCE OF 
ECOLOGICAL PROCESSES? 
 

The null hypothesis tested in any analysis of biogeographical data… is not 80 
that empirical patterns do not differ from random ones, but that they do 
not differ from patterns generated by a particular model of the world. – 
Colwell and Winkler (1984) 

 

 Colwell and Hurtt (1994) originally proposed two general classes of null models for 85 

patterns of species richness generated by randomly distributed species ranges. Both of these null 

models involve placing a geographic range randomly onto a domain (envision throwing disks of 

varying size onto a mat on the floor). In the first model (their model 1), if a range overlaps a 

domain boundary the portion of that range that lies outside the boundary is cut off. As such, the 

center of a terrestrial species’ range could occur in the middle of an ocean, with only a small 90 

portion of the randomly placed range actually occurring on land. Colwell and Hurtt (1994) 

considered this model to represent a “baseline against which to evaluate the effect of introducing 

additional assumptions in the models that follow (p. 572).” In the second type of model (their 

models 2 and 3, hereafter geometric constraint models, or GCMs), if a range falls on a boundary 

it is picked up and thrown again until it falls entirely within the range (see Colwell & Hurtt, 1994 95 

and Sandel & McKone, 2006 for more detailed descriptions of these models). These two types of 

null models are both logically valid null models for the random distribution of ranges in a 

bounded domain. However, they make very different assumptions about how the “random” 

placement of ranges operates – model 1 suggests that there are no boundary constraint effects on 

species richness, whereas GCMs assume substantial boundary effects. As a result these different 100 

types of null model also predict very different diversity patterns – model 1 predicts that species 
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richness will be uniformly distributed across the landscape, while GCMs predict a peak in 

richness at the center of the domain (Sandel & McKone, 2006). 

 The existence of two logically valid null models for random range placement poses a 

problem for unambiguously testing the null expectation. Are there reasons to choose one model 105 

over another? Colwell and Hurtt (1994) rejected the first model based on deviations of observed 

data from secondary predictions of the model. Specifically, Colwell and Hurtt (1994) noted, “If a 

hard-boundary version of [model 1] were realistic, we would expect a drop in mean latitudinal 

range and a stacking up of range limits at the northern extremes of these distributions… Not only 

is there no such pattern, but mean latitudinal range actually peaks at or near the northern limit for 110 

most groups, as Stevens (1989) points out, and range limits do not tend to stack up (G. C. 

Stevens personal communication)”.  

However, one cannot characterize a null model as being inappropriate because it does not 

reproduce empirically observed patterns. The purpose of a null model is to represent the 

observed pattern in the absence of some chosen process, and differences between the null model 115 

predictions and the data suggest that the relevant process is in fact operating. Thus, the 

appropriateness of a null model should be judged on its assumptions rather than on comparisons 

between the model output and the data. Were we to only identify as valid, null models that 

matched the data in all aspects, then by definition reality would always confirm the null 

expectation.  Sandel and McKone’s (2006) recent argument that these secondary patterns can be 120 

used to “help in assessing the usefulness of the various models” suffers from the same logical 

fallacy. In this case, Colwell and Hurtt (1994) have argued that the fact that: 1) range edges do 

not “stack up” in northern latitudes, and 2) average range area increases in northern latitudes, is 

evidence against the placement of ranges in accordance with model 1. However, it is clearly 
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possible to generate these same empirical patterns by placing ranges according to model 1 while 125 

simultaneously imposing a gradient in species richness and/or average range size. 

The confusion regarding the rejection of model 1 based on these secondary characteristics 

likely resulted because the predictions of both types of null models are contingent upon two 

assumptions: 1) the type of range placement, and 2) the absence of meaningful ecological 

gradients that affect richness. Therefore, deviations from the predictions of the model can occur 130 

either because the assumptions about the type of random range placement are wrong (as Colwell 

and Hurtt, 1994 assert) or because of the presence of a meaningful gradient in species richness. 

Since a gradient in species richness is typically what is being investigated in these types of 

studies, deviations from a null model that predicts an absence of gradients (or associated 

secondary characteristics) offer no evidence against using model 1 as a reasonable null. 135 

Moreover, model 1 is not unique in failing to reproduce all aspects of patterns.  GCMs 

also suffer from secondary inconsistencies with empirically observed data. These include a lack 

of symmetric unimodality in most observed data (Willig & Lyons, 1998; Jetz & Rahbek, 2001; 

Laurie & Silander, 2002; McClain & Etter, 2005), a mismatch to observed patterns of spatial 

turnover (Koleff & Gaston, 2001), and predicted zero values for species richness at the edges of 140 

domains (Laurie & Silander, 2002). As such, neither null model can be characterized as superior 

with respect to reproducing all secondary patterns. 

In addition to the arguments regarding secondary characteristics, Colwell and Hurtt 

(1994) also suggest that GCMs may be more appropriate than model 1 based on “theories of 

extinction and minimum viable population size.”  Ranges cannot become arbitrarily small at 145 

domain boundaries because (ceteris paribus) there will be some minimum range size below 

which a population is unlikely to persist as a result of demographic stochasticity. While this may 
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represent a reasonable argument against the strict implementation of model 1, it makes no 

distinction between GCMs and a version of model 1 that includes a minimum range size. This 

would result in a hybrid model, with a uniform distribution of richness across most of the domain 150 

and a decrease in richness only near the edges. When the minimum viable range size is small 

compared to the domain, as would be expected for most continental domains, such a model 

would be mostly indistinguishable from model 1. In addition, Sandel and McKone (2006) have 

recently argued that model 1 (their ‘truncation’ model) is the more appropriate null based on the 

idea that species tend to occur under particular sets of environmental conditions. If the domain 155 

were somehow expanded it is possible that species at the domain’s edge would encounter 

additional suitable habitat and have larger realized ranges. In other words, the observed range of 

a species that abuts the domain edge may only represent a small portion of it’s ‘potential range’ 

(Sandel & McKone, 2006). 

Therefore at least two (more if one considers potential hybrid models) equally viable 160 

classes of null model exist for patterns of species richness in the absence of environmental 

gradients. To implement the first of Colwell and Hurt’s (1994) null models no additional 

decisions need to be made. The expectation in the absence of geographic gradients is simply a 

uniform distribution of species richness, as has been assumed implicitly by studies that do not 

address the ‘mid-domain effect’. However, to implement GCMs, a variety of decisions must be 165 

made, and as we summarize in the subsequent sections, these choices will affect the null 

expectation. 

 

IF RANGE PLACEMENT IS BOUNDED, HOW SHOULD IT BE EXECUTED? 

Mathematical models and null models both emphasize a plurality of 170 
approaches to solving problems in community ecology. For example, a 
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problem such as population growth in a resource-limited environment can 
be addressed with a variety of analytical tools, none of which provides a 
single “right” answer to the question… Similarly, many different null 
models can be constructed to generate community patterns in the absence 175 
of interspecific competition… The diversity of null models has not always 
been appreciated. – Gotelli and Graves (1996) 

 
 

If a GCM is to be used as the null model for the random distribution of species’ ranges, 180 

then a number of decisions must be made during model implementation (Colwell et al. 2004). 

Each decision actually constitutes choosing a slightly different null model (Gotelli, 2000), and 

understanding which null model is appropriate to answer a given question is important. 

Unfortunately, in many cases there is no obviously correct choice regarding how the model 

should be implemented due to our limited understanding of the biology of geographic range 185 

formation, but these decisions must be made nonetheless. The aim of this section is not to 

provide a comprehensive review, nor in most cases to provide advice about which choices to 

make, but simply to illustrate the types of decisions that need to be made, the current debate 

regarding the most appropriate approaches to dealing with them, and the potential effects of the 

different decisions on predicted richness patterns. 190 

Dimensionality 

For historical reasons of perception, data availability, and the feasibility of analysis, the 

complex two-dimensional pattern of species richness on the globe has often been characterized 

as sets of one-dimensional gradients (Hawkins & Diniz-Filho, 2004). Mid-domain models were 

initially developed in this context as null models for one-dimensional latitudinal, elevational, and 195 

bathymetric gradients (Colwell & Hurtt, 1994; Pineda & Caswell, 1998), and consequently the 

great majority (>90%) of studies examining geometric constraints have done so in only a single 

dimension (Colwell et al., 2004). Despite the role of latitude in inspiring GCMs, a mid-domain 
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effect is expected for any arbitrary transect across a domain. In the absence of environmental 

gradients, a peak in richness should occur not just at the latitudinal midpoint of a domain, for 200 

example, but at the longitudinal midpoint, the NW-SE midpoint, et cetera. While this logic seems 

straightforward there is still debate in the literature over whether 1-D, 2-D, or a combination of 

the two is most appropriate (Bokma et al., 2001; Diniz-Filho et al., 2002; Hawkins & Diniz, 

2002; Zapata et al., 2003; Colwell et al., 2004). In addition there are gradients that may be more 

naturally characterized in a single dimension such as depth, elevation, rivercourses, etc., and 205 

there may be reason to include three dimensional versions of continental GCMs that incorporate 

variability in elevation (Colwell et al., 2004). 

Range Placement Method 

One of the first decisions to be made is how to place ranges within the bounded domain 

(Colwell & Hurtt, 1994; Sandel & McKone, 2006). Even in the simple 1-D case a number of 210 

methods to randomly place ranges within the domain exist (Connolly 2005) and expanding into 

two dimensions complicates the matter further. The primary methods for randomly placing 

ranges in either 1-D or 2-D cases are: 1) range shuffling – ranges are randomly placed such that 

they lie entirely within the domain (the pencil box analogy of Colwell et al., 2004); 2) spreading 

dye – a random starting point is chosen within the domain and the range spreads until it has 215 

reached the appropriate size by randomly filling unoccupied cells adjacent to the range edge 

while remaining within the domain (Jetz & Rahbek, 2001); and 3) Poisson placement – where 

range expansion from a starting point is governed by a Poisson probability of halting expansion 

(Connolly, 2005). While all of these approaches are reasonable and intuitive they can produce 

noticeably different null expectations based on details of the underlying implementation 220 

(Connolly, 2005; Sandel & McKone, 2006). 
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Choosing a Range Size Frequency Distribution 

The choice of an appropriate range size frequency distribution (RSFD) greatly affects the 

expected richness pattern of any geometric constraint model and therefore the goodness of fit to 

empirical richness data (Colwell & Hurtt, 1994; Laurie & Silander, 2002; Colwell et al., 2004). 225 

There are typically two choices: 1) range sizes and midpoints may be drawn from a uniform 

distribution of all possible combinations (i.e. all combinations occurring entirely within the 

domain); or 2) the RSFD may be constrained to match that of the observed data. The decision 

regarding which RSFD to use is a decision about how much the null model should be constrained 

by empirical data. Colwell and colleagues (2004; 2005) have recently argued strongly for using 230 

the observed RSFD, contending that the most appropriate null model should incorporate all 

aspects of biology (including the observed RSFD) while excluding only the factor of interest 

(i.e., non-random range placement). Others have argued that biological factors that may shape 

the observed RSFD may be “smuggled in” to the null model, leading to an overestimation of the 

importance of geometric constraints alone (Zapata et al., 2003; Connolly, 2005; Hawkins et al., 235 

2005). This debate over which RSFD is most appropriate for geometric constraints models is 

analogous to the debate over non-random community assembly over the past several decades. 

While some authors argued that the appropriate null involves randomly filling the species-by-

location matrix with the appropriate number of occupancies, others suggested that either row 

sums or column sums or both must be maintained in the randomization (Colwell et al., 2005). 240 

These different choices amount to the inclusion of different assumptions about processes 

occurring in the system (Harvey et al., 1983) and can have marked impacts on the outcome and 

interpretation of the study (e.g., Gotelli, 2000). 

Determining the Domain Limits 
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In order to conduct a GCM analysis it is necessary to define the relevant boundaries for 245 

the system being studied and the question being addressed. Colwell and Lees (2000) proposed 

four types of domain limits: 1) continental edges; 2) ecological regions of sub-continental scale 

(e.g., biomes); 3) distributional limits of the focal taxon; and 4) arbitrary boundaries (e.g., 20º N 

to 20º S latitude). Arguments both for  (Colwell & Lees, 2000; Colwell et al., 2004) and against 

(Koleff & Gaston, 2001; Zapata et al., 2005; Kerr et al., 2006) the different types of boundaries 250 

are present in the literature. However, generally speaking, the choice of domain boundaries is 

often not clear or intuitive, and this uncertainty is problematic given the dependency of the 

predicted richness peak on the exact boundary locations (Vetass & Grytnes, 2002; McClain & 

Etter, 2005). This phenomenon is well illustrated by Willig and Lyons (1998) who examine the 

match between empirical patterns of richness in New World marsupials and GCM predictions 255 

using three different latitudinal domains: the full latitudinal extent of the New World 

(disagreement in peak location, poor fit), the latitudinal extent of the marsupial fauna (agreement 

in peak location, poor fit), and the smallest latitudinal extent to include 95% of the marsupial 

species (agreement in peak location, good fit). Depending on the choice of boundaries very 

different conclusions may be reached about the importance of geometric contrains. 260 

Including Non-endemic Species  

The logic of GCMs is contingent upon the examination of species endemic to the domain 

(Colwell & Lees, 2000; Jetz & Rahbek, 2001; Whittaker et al., 2001; Hawkins & Diniz-Filho, 

2002; Colwell et al., 2004; Pimm & Brown, 2004). However, the fact that non-endemic species 

exist and therefore must be dealt with in analyses creates confusion and ambiguity for choosing 265 

the appropriate null model. As the percentage of non-endemic species in the biota increases (e.g., 

biomes will have proportionally more non-endemics than continents), this issue becomes 
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increasingly important. Three approaches have been proposed for dealing with non-endemics: 1) 

exclude them entirely from all analyses (Colwell & Lees, 2000; Jetz & Rahbek, 2001); 2) 

truncate the range at the domain edge and treat the portion occurring within the domain as an 270 

endemic (Diniz-Filho et al., 2002; McCain, 2003); and 3) truncate the range at the domain edge, 

and force these non-endemic range fragments to remain attached to a domain edge during 

randomization (Colwell et al., 2004). Colwell et al. (2004) have argued that this decision does 

not strongly affect GCM fits to the data (based solely on correlation coefficients), but it can 

certainly affect the general shape and magnitude of the predicted relationship (e.g., the third 275 

approach will clearly produce flatter richness peaks than the second approach), especially in 

cases where the number of non-endemics is large. 

Range porosity  

One assumption of classic GCMs is that species are found at all localities within their 

geographic range. However, most species’ ranges are patchily occupied (Rapoport, 1982; 280 

Gaston, 2003; Hurlbert & White, 2005), and this patchiness has potential consequences for the 

implementation of GCMs (Hawkins et al. 2005). Pineda and Caswell (1998) deal with this by 

incorporating the actual patchiness of species distributions in the null predictions by randomizing 

the species by location matrix for point samples.  However, this assumes a complete lack of 

meaningful range coherence, which is clearly not the case in natural systems (Rahbek and 285 

Graves, 2000; Colwell et al., 2004). Alternatively, McClain and Etter (2005) varied the 

percentage of species randomly removed from point samples after ranges had been shuffled 

along a bathymetric gradient. While only at severe “porosity” was the mid-domain peak 

eliminated (see also Zapata et al., 2003; Colwell et al., 2004), the magnitude and curvature of the 

predicted richness curve varied systematically with mean range porosity (McClain & Etter, 290 
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2005). Colwell et al. (2004) argue that range porosity is “rarely a source of significant bias for 

most taxa” because ranges are generally not particularly porous and range contiguity would have 

to be near zero to completely remove the mid-domain richness peak. However, recent work on 

over 300 bird species has shown that on average species only occur on 50-60% of the surveys 

within their range (Hurlbert & White, 2005). While this level of range porosity does not 295 

eliminate the mid-domain peak, it does have substantial effects on GCM model predictions 

(McClain & Etter, 2005), and should thus be explicitly modeled when possible (e.g. Dunn et al., 

2006). In addition, the fact that survey data reflect patterns at a relatively fine resolution with 

very little spatial autocorrelation remaining after accounting for environmental factors (Hurlbert 

& White, 2005) suggests that the rationale for applying GCMs to survey data is generally 300 

weaker. 

In general, this section demonstrates that there are a large number of decisions to be made 

when implementing a GCM. In some cases there are strong, but contradictory opinions about the 

most appropriate course of action. In other cases, there is simply a recognition that a decision 

must be made, but little suggestion for which approach, if any, is superior. Given the fairly 305 

substantial affects that some of these decisions have on the predictions of the null model (e.g., 

Willig & Lyons, 1998; Grytnes & Vetaas, 2002; Bellwood et al., 2005; Connolly, 2005; McClain 

& Etter, 2005) this represents a significant challenge for the implementation and interpretation of 

GCMs. In other words, if it is deemed necessary to include a GCM in an analysis of species 

richness patterns, which GCM is it that should actually be used? 310 

EVALUATING THE IMPORTANCE OF GEOMETRIC CONSTRAINTS 

 Part of the confusion over how best to evaluate GCMs stems from the historical context 

in which null models were developed. Community null models of the 1970s and 1980s were used 
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to ask some version of the question, “Do ecologically or taxonomically similar species co-occur 

less frequently than expected by chance?” Such null models relied on the principle of 315 

falsification (Gotelli & Graves, 1996), categorizing empirical patterns as being either 

distinguishable or indistinguishable from random based on some metric of co-occurrence. The 

focus of GCMs, on the other hand, is on the spatial pattern of species richness, an inherently 

complex pattern which cannot be reduced to a single metric. As such, authors have evaluated 

GCMs in a number of different ways including: 1) overall model fit based on correlation (e.g., 320 

Willig & Lyons, 1998); 2) testing a plot of predicted versus observed richness values for a slope 

of 1 and intercept of 0 (e.g., Jetz & Rahbek, 2001; Romdal et al., 2005); 3) comparison of 

empirical richness values to 95% confidence intervals around GCM predictions (e.g., McCain, 

2003); 4) comparison of curve parameters such as curvature, height, and peak location (e.g., 

McClain & Etter, 2005); 5) evaluating the degree to which the null model accounts for secondary 325 

predictions such as species turnover and the positions of geographic ranges (e.g., Koleff & 

Gaston, 2001); and 6) testing GCM predictions when potential environmental determinants of 

richness are controlled for (Jetz & Rahbek, 2002). 

  Some of these methods of evaluation are hypothesis tests in the tradition of earlier null 

models that ask whether the entire pattern (method 2) or some aspect of it (method 4) differs 330 

from the null expectation. Despite this tradition of falsification in community null models, 

Colwell et al. (2004) argue against using such an “all-or-nothing” approach. This is 

understandable given that the complexity of the pattern being predicted allows for the ‘partial 

matching’ of null model predictions. Along these lines Colwell and Lees (2000, p. 75) suggest 

that “Departure from the expected richness peak, under an appropriate null model, but not the 335 

peak itself, requires biological or historical explanation...” Connolly et al. (2003) discuss and 
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interpret patterns of fish and coral diversity in just this way, focusing on deviations from the null 

predictions. However, this approach assumes that GCM predictions have logical primacy (see 

Roughgarden, 1983 for a discussion of logical primacy and null models) over other candidate 

predictor variables in explaining richness patterns. This can be problematic as can be seen by 340 

considering the case where richness increases linearly across a domain as a direct result of some 

gradient. Since GCM predictions are by definition hump-shaped, are we to seek out ecological 

variables that explain the J-shaped pattern of the residuals or the simpler linear relationship 

(Figure 1)? Furthermore, one could envision a scenario in which richness varies across the 

domain in a manner consistent with the predictions of a GCM, and yet the ranges are distributed 345 

in a distinctly non-random, perfectly nested manner (Figure 2). While this nested distribution of 

ranges begs for a biological explanation (e.g., nested physiological tolerances, unimodal 

variation in resource availability with nested competitive abilities, etc.), a strong correlation 

between GCM predictions and the empirical pattern would suggest there was nothing further to 

explain. 350 

 More recently, Colwell et al. (2004, p. E14) stated that “there is no justification for 

treating [mid-domain effect] predictions as primary just because they are generated by a null 

model.” Instead, they argue that GCM predictions should be treated identically to other 

ecological variables and included in a multivariate framework. Thus far only a few studies 

examining GCMs have simultaneously considered other physical, biological, or historical 355 

correlates of richness (e.g., Jetz & Rahbek, 2002; Bellwood et al., 2005; Mora & Robertson, 

2005; Watkins et al., 2006). This approach alleviates the types of problems illustrated in Figure 1 

and thus is clearly preferable as pointed out by Colwell et al. (2004).  However, the use of 

regression models evaluates the fit or partial fit of GCM predictions in a relative rather than 
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absolute sense (Zapata et al., 2003; Colwell et al., 2004). Predicted richness and empirical 360 

richness can be highly correlated and yet substantially different in magnitude, and thus such 

analyses overestimate the importance of GCMs. Environmental correlates do not have this 

problem because coefficients for these variables are intentionally being fitted to the data in order 

to determine the model (i.e., environmental models have free parameters whereas GCMs by 

definition do not).  As a result of this difference GCM predictions need to be treated differently 365 

than environmental variables and a method for integrating these two distinct types of predictors 

has not yet been proposed. 

 One area of analysis of GCMs that has been almost entirely ignored is consideration of 

power. Power is the probability of detecting a non-random (or non-null) pattern when one is 

actually present. Knowing the power of null models is important, because a null model with very 370 

low power will almost always suggest that non-random processes are not operating, even when 

they are operating quite strongly (e.g., Toft & Shea, 1983; Losos et al., 1989; Kelt et al., 1995; 

Gotelli, 2000). In a multivariate framework, power determines how easily the effects of different 

predictor variables can be distinguished from one another. For example, one-dimensional 

evaluations of richness patterns have inherently less power than two-dimensional analyses 375 

because of a simplification of pattern and concomitant loss of information. Collapsing variables 

and predictions onto a single dimension is likely to increase multicollinearity, reducing the 

ability to distinguish among variables. For example, were we to partition the variance in 

latitudinal species richness explained by net primary productivity and a one-dimensional GCM 

we would likely find that much of this variance cannot be uniquely ascribed to either variable, 380 

greatly confounding the interpretation of these results. Detailed analyses of power are necessary 

to understand the strength with which the absence of process can be inferred from GCM results. 
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Along these lines, it is worth pointing out that if one-dimensional simplifications are used for 

studying GCMs then the strength of the MDE should be approximately equal for all one-

dimensional axes that cross the center of the domain (ceteris paribus). Thus, support for a GCM 385 

could be based on the strength of the weakest one-dimensional relationship, or perhaps on some 

measure of the central tendency of the distribution of strengths across all possible axes (e.g. the 

average correlation coefficient).  If a GCM explains 80% on only one axis but little on most of 

the others, then the logical inference is that there is only weak evidence for a MDE, and that 

environmental variables that correlate with the primary axis are candidate explanatory richness 390 

variables. This observation raises serious questions about support for GCMs drawn from 1-D 

analyses that have focused solely on a single axis for which a strong gradient is known to exist. 

 

CONCLUSIONS 

In this paper we have highlighted three major challenges in the current application of null 395 

models for species richness. The first, and perhaps most critical of these, is that the primary 

published justification for choosing GCMs over the simpler Type 1 null model is flawed. A null 

model cannot be rejected because it does not match empirical patterns. The null model must be 

chosen because it is appropriate for the question being asked, and deviations from that model 

indicate that the excluded process (or processes) is in fact operating. Unfortunately, there is no 400 

way to know which of the two general types of null model presented by Colwell and Hurtt 

(1994), or potential hybrids, is in fact justified by the question being asked: “what patterns of 

species richness would arise under minimal biological assumptions, in a world without 

geographical gradients in adaptation, speciation rate, extinction rate, habitat diversity, 

productivity, competition, predation, or dispersal”? (p. 570). As such, until we better understand 405 
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the processes responsible for geographic range formation and how they would operate in the 

presence of boundaries to range expansion, the choice of null model is a matter of preference 

rather than objective reasoning. 

The second challenge is the fact that even if GCMs are considered to be the most 

appropriate general type of null model, the exact null expectation is contingent on a number of 410 

choices that must be made during model implementation. These choices can lead to substantially 

different null predictions for species richness patterns (Bellwood et al., 2005; Connolly, 2005; 

McClain & Etter, 2005; Sandel & McKone, 2006). Therefore there does not exist a single null 

prediction, but a suite of them, and there is rarely a concrete justification for choosing some 

realizations over others (Colwell et al., 2004). One is left to make these choices arbitrarily, or 415 

one could be tempted to make choices that maximize the fit to the data. Neither of these 

approaches represents an objective test of a specific null hypothesis.  At the minimum 

researchers should detail the specific decisions made in implementing a GCM. 

Finally, even if one particular method of implementing GCMs could be viewed as 

superior, it is not clear how best to evaluate these types of randomization based null models and 420 

their contributions to observed patterns. There is significant disagreement in the literature over 

whether GCMs: 1) should be treated like more traditional null hypotheses and either accepted or 

rejected (Pineda & Caswell, 1998; Connolly et al., 2003), or whether their predictions should be 

included as predictive variables in multivariate analyses (Colwell et al., 2004; 2005); 2) should 

be given logical primacy (Colwell & Lees, 2000; Bokma et al., 2001) or treated as equivalent to 425 

other variables (Colwell et al., 2004; 2005); and 3) should be evaluated using secondary 

predictions (Koleff & Gaston, 2001; Laurie & Silander, 2002; Connolly et al., 2003) or only 

based on species richness patterns per se (Colwell et al., 2004). In addition, there are problems 
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related to power and multicollinearity between null model predictions and relevant 

environmental variables. At the moment, there is no straightforward way to deal with these kinds 430 

of issues. 

In general, we have sought to highlight the fact that random range placement models can 

be carried out in a variety of different ways, depending upon assumptions regarding the basic 

nature of the null, the inclusion of non-endemics, the definition of the domain, the 

dimensionality of the analysis, etc. Not all such models will predict a peak in richness at the 435 

center of the domain – some will predict uniform richness – and among those that do predict a 

peak there will be differences in the specific form of the predicted richness pattern. This suggests 

that the ‘mid-domain effect’ per se is neither as clean nor as universal a null hypothesis as has 

sometimes been suggested and indicates that substantial additional work is necessary before real 

inference can be drawn from GCM analyses. 440 
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Figure 1: An example where species richness increases linearly across the domain (solid line, 
1a). GCM predictions are hump-shaped pattern of richness (dotted line, 1a).  Residuals 560 
from GCM expectations are J-shaped (1b). 
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Figure 2: Example of richness varying across a one-dimensional domain in a manner consistent 565 
with the predictions of a geometric constraint model, but with ranges distributed in a 
distinctly non-random, perfectly nested manner. (A) Each line segment represents a 
species’ range along a hypothetical spatial gradient. Ranges are spaced along the y-axis 
purely for illustrative purposes. (B) Empirical pattern of species richness and the pattern 
predicted by the random shuffling of ranges in (A) using Colwell’s (2006) RangeModel 570 
software. Error bars represent 95% confidence intervals based on 1000 simulations. 

 


