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The pebbling threshold of the square of cliques
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Abstract

Given an initial configuration of pebbles on a graph, one can move pebbles in pairs along edges, at the cost of one of the pebbles
moved, with the objective of reaching a specified target vertex. The pebbling number of a graph is the minimum number of pebbles
so that every configuration of that many pebbles can reach any chosen target. The pebbling threshold of a sequence of graphs is
roughly the number of pebbles so that almost every (resp. almost no) configuration of asymptotically more (resp. fewer) pebbles
can reach any chosen target. In this paper we find the pebbling threshold of the sequence of squares of cliques, improving upon an
earlier result of Boyle and verifying an important instance of a probabilistic version of Graham’s product conjecture.
© 2007 Elsevier B.V. All rights reserved.
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1. Pebbling number

Consider a connected graph G on n vertices. Suppose that a configuration C of t pebbles is placed onto the vertices
of graph G. A pebbling step from u to v consists of removing two pebbles from vertex u and then placing one pebble
on an adjacent vertex v. We say that a pebble can be moved to a vertex r (called root vertex) if after finitely many steps r
has at least one pebble. If it is possible to move a pebble to the root vertex r then we say that C is r-solvable; otherwise,
C is r-unsolvable. Finally, we call C solvable if it is r-solvable for all r, and unsolvable otherwise. Define the pebbling
number �(G) to be the smallest integer t such that every configuration of t pebbles on the vertices of G is solvable. A
fair amount is known about the pebbling numbers of typical graphs like complete graphs, paths, cycles, cubes, etc. (see
[18,19] for surveys), relations to known parameters such as connectivity [13], diameter [7], girth [12], and domination
number [8], and interesting variations such as optimal pebbling [23], and cover pebbling [10] are being investigated.

2. Random configurations

In this paper we consider a random pebbling model in which a particular configuration of pebbles is selected uniformly
at random from the set of all configurations with a fixed number of pebbles. One can think of the configuration of
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pebbles as a placement of unlabeled balls in labeled distinct urns. This is analogous to the so-called static model of
random graphs, whose sample space consists of all graphs with a fixed number of edges. Since vertices may have
more than one pebble, a particular configuration is a multiset of t elements with the ground set [n]. We construct the
probability space Cn,t by choosing configurations randomly and assuming that they all are equally likely to occur.

The size of the set Cn,t is the number of possible arrangements of t identical balls placed in n distinct urns, so

|Cn,t | =
(

n+t−1
t

)
, which we denote by

〈
n
t

〉
(the reader may find it useful to use the terminology “n pebble t”). We will

be interested in the probability spaces associated with sequences of graphs G= (G1, G2, . . . , Gn, . . .). In this notation
the index n represents the position of the graph Gn. In some of the graph sequences, such as cubes, for example, the
size of the vertex set of Gn is not the same as the position. Therefore, we define N = Nn = N(Gn) = |V (G)| to be the
number of vertices of Gn. Graphs in G are in ascending order with respect to this number, i.e. Nn > Nm for n > m.

We will study the pebbling threshold phenomenon that occurs in this model, as it does for many random graph
properties. For two functions f (n) and g(n) we write f>g, (equivalently g?f ) if limn→∞f (n)/g(n) = 0. We set
o(g) = {f |f>g} and �(f ) = {g|f>g}. Also, we write f ∈ O(g), or equivalently g ∈ �(f ), when there are positive
constants c and k such that f (n)/g(n) < c, for all n > k. In particular, iff (n)/g(n) → 1 as n → ∞, we write f ∼ g.
Furthermore, we define �(g) = O(g) ∩ �(g). Finally, for two sets of functions F and G we write F�G if f ∈ O(g)

for all f ∈ F, g ∈ G.
A function f =f (n) is called a threshold for the graph sequence G, and we write f ∈ �G, if PG(n, t) → 1 whenever

t?f , and PG(n, t) → 0, whenever t>f . Here PG(n, t) denotes the probability that a random configuration in Cn,t

is solvable for the graph from G having n vertices. In other words, if f = f (n) ∈ �G, then for any function � = �(n)

tending to infinity with n, PG(n, �f ) → 1 and PG(n, f/�) → 0 as n → ∞.
Roughly speaking, the pebbling number describes the “worst-case” scenario, as it is one more than the size of the

largest unsolvable configuration. The threshold function, on the other hand, deals with “typical” configurations and
estimates the average chance of being solvable. For example, the threshold of a family of cliques K is �K = �(

√
N).

This problem is similar to the well-known “birthday” problem—how many people must be in a room so that with high
probability two people share the same birth date?—but here the pebbles are unlabelled. The general existence of the
pebbling threshold is established in [4], and in [11] it is shown that every graph sequence G satisfies �G ⊂ �(f )∩O(g),
where f ∈ �K and g ∈ �P, for the sequence of pathsP. We are going to compute the pebbling threshold of the sequence
of squares of cliques.

3. Threshold version of Graham’s conjecture and main theorem

Chung’s paper [9] raised a natural question about the relationship between the pebbling number of individual graphs
and the pebbling number of their cartesian product.

Definition 1. The Cartesian product of two graphs G1 and G2, denoted G1�G2 is the graph with vertex set

V (G1�G2) = {(v1, v2)|v1 ∈ V (G1), v2 ∈ V (G2)}
and edge set

E(G1�G2) = {((v1, v2), (w1, w2))|v1 = w1 and (v2, w2) ∈ E(G2) or v2 = w2 and (v1, w1) ∈ E(G1)}.

The general conjecture about the pebbling number of the cartesian product of graphs was originally stated by
Graham [9].

Conjecture 2. For all graphs G1 and G2 we have that

�(G1�G2)��(G1)�(G2).

There are several results supporting this conjecture. It is known [9] that the m-dimensional cube and that the
product of cliques satisfy this conjecture. Also, Moews [22] proved it holds for the product of trees. Pachter et al.
[25] proved the conjecture for the product of cycles Cm�Cn with the exception of when m and n are both from the
set {5, 7, 9, 11, 13}. Herscovici and Higgins in [17] proved it for C5�C5. Recently, Herscovici [16] found a proof for



4308 A. Bekmetjev, G. Hurlbert / Discrete Mathematics 308 (2008) 4306–4314

all these exceptions confirming Graham’s conjecture for the product of cycles. Finally, the conjecture holds for dense
graphs [12]. For the graph sequences G = (G1, . . . Gn, . . .) and H = (H1, . . . , Hn, . . .) let us define the sequence
G�H = (G1�H1, . . . , Gn�Hn, . . .). The sequence G�H is called the cartesian product of G and H. The number
of vertices of the nth element of G�H is N(Gn�Hn) = N(Gn)N(Hn). Here we are interested in the following
probabilistic version of Conjecture 2, suggested by Hurlbert.

Conjecture 3. Let F and G be two graph sequences with number of vertices R=N(Fn) and S =N(Gn), respectively,
and with pebbling thresholds �F and �G, respectively. Let f ∈ �F, g ∈ �G, and h ∈ �H, where H = F�G, having
T = N(Hn) = RS vertices. Then

h(T ) ∈ O(f (R)g(S)).

This conjecture is shown to hold for d-dimensional grids (products of paths) in [12]. We are going to verify Conjecture
3 for the cartesian product of cliques K2 = K�K = (K1�K1, . . . , Kn�Kn, . . .). If true, the pebbling threshold for
the product of cliques should be

�K2 ⊆ �(
√

N1/2
√

N1/2) = �(
√

N),

where N is the number of vertices of K2, namely N = n2. This would improve Boyle’s [6] result that �K2 ⊆ O(N3/4)

and give the exact result (recall the lower bound for all sequences mentioned above). Our main result is the following
theorem.

Theorem 4. LetK2 be the sequence of the cartesian products of cliques, with N=N(K2
n). Then the pebbling threshold

of K2 is

�K2 = �(
√

N).

This theorem is perhaps surprising, considering that the graph K2
n is fairly sparse. It seems that the structure of the

graph is what keeps its threshold small.

4. Cops and robbers

Let us consider a particular configuration of pebbles on the cartesian product of cliques K2
n = Kn�Kn. Note that

this graph can be thought of as a rectangular grid with each row and column a complete graph. Therefore, to pebble
to a specific root r one needs to collect two or more pebbles on any vertex that belongs to the row r�Kn or to the
column Kn�r . This suggests the following interpretation of the pebbling problem. We partition the vertices of K2

n

into three distinct sets: police, or cops (P), citizens (T), and robbers (R). Vertices in the set P are those with two or
more pebbles on them, T is the set of vertices with one pebble, and R is the remaining set of empty vertices. (This
approach is motivated by a variety “cops and robbers” games, one of the more prevalent types of games on graphs.
More information on these types of games can be found, for example, in [1,2,24,27].)

In our case, the robber is immobile and cops can move only in certain directions and their number may change during
the game. If root r is chosen in R then for a pebbling configuration to be solvable it is sufficient that there is at least
one cop on r�Kn or Kn�r . Any citizen can become a cop if it is possible to move at least one pebble to it from some
other cop. We say that a robber r = v0 can be caught if there is a sequence of citizens v1, . . . , vk−1 and a cop c = vk so
that vi is adjacent to vi+1 for 0� i < k. Then the pebbling configuration is r-solvable if a vertex r can be caught. For
example, on Fig. 1 it is possible to pebble from the vertex c (cop) to the vertex r (robber).

Any pebbling configuration C determines the citizen subgraph GC of K2
n induced by the vertex set P ∪ T. The edge

set of GC is determined by the vertices that see each other. Any component of GC containing two or more cops we
call a police component.

Claim 5. Any configuration whose citizen subgraph has a police component is solvable.

Proof. Let us consider a police component with vertices v1, . . . , vk such that v1, vk ∈ P, v1, . . . , vk−1 ∈ T and vi−1
is adjacent to vi for 1� i < k. We now use the following strategy. Without loss of generality, we assume that v1 and
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Fig. 1. Pebbling from “Cop” to “Robber”.

v2 are in the same row v1�Kn. Then we find vertex v′
1 which is the intersection of Kn�r and v1�Kn and make v′

1 a
citizen by moving a pebble from v1. Now r = v0 can be caught by v′

1, v2, . . . , vk . �

Another sufficient condition for a pebbling configuration to be solvable is the existence of a “robocop”, a vertex with
four or more pebbles on it. In that case any robber r can be caught by sending two pebbles to either Kn�r or r�Kn,
making a cop there and moving a pebble to r from this new cop. In Section 7 we prove that the probability that such
a “robocop” exists tends to zero. Hence, our goal is to prove that almost every configuration of asymptotically more
than n pebbles on K2

n has a police component.
The next argument transforms the original problem of the solvability of a pebbling configuration on K2

n to con-
nectedness properties of a related bipartite multigraph B ′

n,n. First, we observe that K2
n is isomorphic to the line graph

of the complete bipartite graph Kn,n. Indeed, both vertex sets are isomorphic to {1, . . . , n}2, and both edge sets are
isomorphic to pairs from {1, . . . , n}2 that share a coordinate. Similarly we construct a bipartite graph Bn,n whose line
graph is isomorphic to GC . The bipartite multigraph B ′

n,n is constructed from Bn,n by adding multiple edges according
to the multiplicity of pebbles on the vertices of GC . In other words, for every vertex (u, v) ∈ GC we place the edge
uv ∈ B ′

n,n with multiplicity C((u, v)).

5. Model descriptions

In this section we describe three different models for random bipartite graphs and multigraphs. We compare them
and determine asymptotic implications from one to another which we can apply then to the pebbling threshold on the
product of graphs. In particular, we will be interested in the property of having a large component (which will be shown
to be a police component almost surely).

The first model (Model A) is an analogue of the probabilistic model for random graphs. In model A edges between
any two vertices in different parts of Bn,n are mutually independent and have the same probability p. Computations
are easiest in this model, in which all graphs are simple. The probability space corresponding to model A we denote
by Bn,p.

The second model (Model B) is an analogue of the static model for random graphs. First, the set of all bipartite
simple graphs on n by n vertices is denoted B(n). We denote the set of graphs in B(n) with M edges by B(n, M). This

model consists of |B(n, M)| =
(

N
M

)
different graphs, where N = n2. Clearly, B(n) = ⋃N

M=0B(n, M).

Finally, we need a generalization of the second model for the case of bipartite multigraphs (Model B′). As it was
defined in the previous section, the edges of the line graph represent pebbles; therefore, we need a multiple edge model
to reflect this situation. We denote byB′(n, m) the set of all bipartite multigraphs on n by n vertices with m edges. Model

B′ consists of precisely |B′(n, m)| =
〈
N
m

〉
different graphs, where N = n2. Finally, we define B′(n) = ⋃∞

m=0B
′(n, m).
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The multiple edge model for random graphs was considered in [3]. It was shown that the differences between simple
graphs and multigraphs are negligible in most cases. Janson et al. [20] give a detailed analysis of the multigraph model
using an algebraic approach. We are going to show that, for the right translation of parameters, certain properties that
hold in model A will transfer to hold in B, and then to B′ as well.

6. Connections between models

Models A and B are very closely related to each other, provided that M is about pN, which is the expected number of
edges of a graph in Bn,p. In fact, these two models are asymptotically equivalent to each other for any convex property.
Call a family of multisets M increasing if A ⊆ B and A ∈ M implies that B ∈ M, decreasing if A ⊆ B and B ∈ M
implies that A ∈ M. A family which is either increasing or decreasing is called monotone. Finally, a family M is
convex if A ⊆ B ⊆ C and A, C ∈ M imply that B ∈ M. Also, given a property S we shall say that almost every (a.e.)
graph in the probability space M has property S if Pr[G ∈ M : G has S] → 1, as n → ∞.

The equivalence of models A and B follows from the general equivalence of the probabilistic and static models in
random graphs, which was proven by Bollobás (see [5,26]). Here we state the result for random bipartite graphs.

Result 6. Let N = n2 and let 0 < p = p(n) < 1 be such that pN → ∞ and (1 − p)N → ∞ as n → ∞, and let S be
a property of graphs.

(1) Suppose that ε > 0 is fixed and that a.e. graph in B(n, M) has S whenever

(1 − ε)pN < m < (1 + ε)pN .

Then a.e. graph in Bn,p has S.
(2) If S is a convex property and a.e. graph in Bn,p has S, then a.e. graph in B(n, M) has S for M = �pN.

Since we are considering boolean algebras in models A and B we can directly apply the same technique to prove the
equivalence of these two models. Next we establish a relationship between models B and B′.

The support of multigraph G ∈ B′(n) is the simple graph obtained by identifying the parallel edges of G. We denote
the support by �G. Obviously, �G ∈ B(n). We call the number of edges in the support the size of the support of G,
written Z = ZG = ‖�G‖. (Here we use the notation ‖ · ‖ because we are counting edges rather than vertices.) The set
of all graphs G ∈ B′(n, m) with the same support size ZG = s we denote �(n, m, s).

An equivalent setting for the last definition is to consider m unlabeled balls placed in N distinct urns. Then for N =n2

the set �G represents the set of non-empty urns and �(n, m, s) is the set of distributions into exactly s of N urns. We
need to find the average size of the support in this model. The probability that G has support of size s, for 0�s�m, is

Pr[ZG = s] =

(
N

s

) 〈
s

m − s

〉
〈
N

m

〉

=

(
N

s

) (
m − 1
m − s

)
(

N + m − 1
m

)

=

(
N

s

) (
(N + m − 1) − N

m − s

)
(

N + m − 1
m

) .

The last expression means that the random variable Z =ZG follows the hypergeometric distribution H with parameters
H(N + m − 1, N, m). The hypergeometric distribution H(L, k, l) describes the number of white balls in the sample
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of size l chosen randomly (without replacement) from an urn containing L balls, of which k are white and L − k are
black. Direct computations give us the general formula for the kth moment of a hypergeometric distribution:

E[Zk] = Nm

N + m − 1
E((Y + 1)k−1), (1)

where Y is a hypergeometric r.v. with parameters H(N + m − 2, N − 1, m − 1). Setting k = 1, we obtain E[ZG] = mq

with q = N/(N + m − 1). The intuitive idea is that, for a large value of N, the average support size is close to m. If
the number of edges m = m(n) ∈ o(N) then the value of q is close to one. According to the second moment method,
if the variance of random variable ZG is relatively small then the value of ZG almost always stays close to the mean.
Indeed, in Eq. (1) if k = 2 then

E[Z2] = Nm

N + m − 1
E[Y + 1] = Nm

N + m − 1

(
(N − 1)(m − 1)

N + m − 2
+ 1

)
.

Therefore, the variance is

Var[ZG] = E[Z2
G] − (E[ZG])2

= Nm

N + m − 1

(
(N − 1)(m − 1)

N + m − 2
+ 1 − Nm

N + m − 1

)

= mq[(N − 1)(m − 1)(N + m − 1) + (N + m − 2)(N + m − 1)

− Nm(N + m − 2)]/(N + m − 2)(N + m − 1)

= mq

N + m − 2

(
Nm − N − m + 1

N + m − 1

)

= mq

N + m − 2
(N − 1)(1 − q). (2)

For m(n) ∈ o(N) we have that

Var[ZG]
(E[ZG])2

= N − 1

N + m − 2

(
1 − q

mq

)
→ 0,

as n → ∞. Hence, Var[ZG] ∈ o((E[ZG])2).
Janson et al. [21] suggested the following notation to measure more precisely the closeness of a random variable to

its mean.

Notation 7. Let {Xn}∞n=1 be a sequence of random variables and {an}∞n=1 a sequence of positive real numbers. We
write

Xn = op(an)

if, for every ε > 0, almost always |Xn| < εan (i.e. Pr[|Xn| < εan] → 1 as n → ∞).

This definition is analogous to o(·), but with probability involved.

Lemma 8. Let q = N/(N + m − 1) and m ∈ m(n) ⊆ o(N). Then

ZG = mq + op(mq),

for a.e. graph G in B′(n, m).

Proof. We are going to use the second moment method with the random variable Z = ZG. Since E[Z] = mq and,
using Eq. (2) and Chebyshev’s inequality, we obtain

Pr[|Z − mq| > 	]� 
2

	2
= mq

	2

N − 1

N + m − 2
(1 − q)� mq

	2
→ 0

for 	 = εmq since mq → ∞. �
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Now we are ready to establish the relationship between models B and B′. The next theorem provides a criterion for
any increasing property that holds in B(n, M) to hold in B′(n, m) as well.

Theorem 9. Let S be any increasing property of graphs and q = N/(N + m − 1) for some m ∈ o(N). Also, let
BS(n, M) ⊆ B(n, M) and B ′

S(n, m) ⊆ B′(n, m) denote those bipartite graphs and bipartite multigraphs, respectively,
having property S. If for every sequence M = M(n) such that M = mq + op(mq) we have Pr[BS(n, M)] → 1, as
n → ∞, then also Pr[B ′

S(n, m)] → 1, as n → ∞.

Proof. We are going to prove that Pr[B ′̄
S
(n, m)] → 0. Let us consider the set

M(ε) = {M||M − mq|�εmq},
for some ε > 0. We assume in the hypothesis that for any M ∈ M(ε) we have

Pr[BS(n, M)] → 1, (3)

whenever n → ∞. Then

Pr[B ′̄
S
(n, m)] =

∑
M /∈M(ε)

Pr[B ′̄
S
(n, m)|ZG = M] Pr[ZG = M]

+
∑

M∈M(ε)

Pr[B ′̄
S
(n, m)|ZG = M] Pr[ZG = M].

The first sum in the last expression can be bounded from above by

∑
M /∈M(ε)

Pr[ZG = M] = Pr[ZG /∈ M(ε)],

which tends to zero by Lemma 8. For every graph B ∈ B(n, M) there are
〈

M
m−M

〉
multigraphs B ′ ∈ B′(n, m) with

�B ′ = B. Moreover, S is increasing. Therefore we can give an upper bound for the second sum of

∑
M∈M(ε)

Pr[B ′̄
S
(n, m)|ZB ′ = M]�

∑
M∈M(ε)

〈
M

m − M

〉
|BS̄(n, M)|

〈
N

M

〉

=
∑

M∈M(ε)

〈
M

m − M

〉 (
N

m

)
〈
N

M

〉 Pr[BS̄(n, M)]

� Pr[BS̄(n, M∗)]
∑

M∈M(ε)

〈
M

m − M

〉 (
N
m

)
〈
N

M

〉 , (4)

where M∗ is the element of M(ε) that maximizes Pr[BS̄(n, M)]. The sum in the last expression is a partial sum of
probabilities of a hypergeometric random variable and, therefore, does not exceed 1. Hence, the last line in (4) is
bounded from above by Pr[BS̄(n, M∗)], which goes to zero, as n → ∞, by assumption (3). Thus, Pr[B ′̄

S
(n, m)] → 0

as n → ∞, and the statement of the theorem follows. �

The particular increasing property in which we are most interested is that of containing a large component, of size
proportional to 2n. We will show that such a connected component is almost surely a police component.
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7. Large components and police components

We first note that, almost surely, all cops have only two edges. Recall that B ′ ∈ B′(n, m) is chosen uniformly at
random, where m = �n and � → ∞ arbitrarily slowly as n → ∞. The probability that there exists a vertex with at
least k pebbles on it is at most

n2
〈

n2 − 1
�n − k

〉
〈

n2

�n

〉 ∼ n2
(

�n

n2 + �n

)k

∼ n2
(�

n

)k

.

For k > 2 the last expression tends to zero as n → ∞.
We use this fact to show that connected components of linear size have many cops.

Lemma 10. Let H be a connected component of size �2n in B ′ ∈ B′(n, m), where m = �n. Then almost surely H is a
police component.

Proof. Let x = x(n) be the excess of edges in B ′, namely x(n) = ‖B ′‖ − ‖�B ′ ‖. Since almost surely all cops have
exactly two edges, the number of cops s = s(n) in B ′ is almost always equal to the excess x(n). Using Lemma 8 (with
q = N/(N + m − 1)) we compute

x(n) ∼ m − mq = �n(1 − q) ∼ �2

almost surely. Given that there are �2 cops in B ′, an upper bound of the probability that H has at most one cop is(
qn − �2n

�2

)
+ �2n

(
qn − �2n

�2 − 1

)
(

qn

�2

) �
(

qn − �2n

qn

)�2 (
1 + 2�n�2

qn − 2�n − �2

)

� e−2��2/q

(
2��2

q − 2� − �2/n

)
.

We may assume that H is small, so if 4� < q the last term is at most �2e−�2/2 → 0 as n → ∞. �

Finally, we prove that there is a connected component of linear size in Bn,p. The following theorem was proven in
[15] for the random graph Gn,p. The proof involved analyzing the hitting time of a certain parameter in a random walk
and used no special property of the graph structure. Here we modify the result for the random bipartite graph Bn,p.
The same method yields the following result, which we state without proof.

Result 11. Let � > ln 16, p = �/n, and Bn ∈ Bn,p. Then almost surely there is a path in Bn of length at least
(1 − (ln 16)/�)2n.

8. Proof of Theorem 4

Now we prove that �K2 = �(
√

N).

Proof. We recall that the pebbling threshold of every graph sequence is in �(
√

N). Therefore we need only show that
�K2 = O(

√
N). Write N = n2, let m = �n, where � = �(n) → ∞ arbitrarily slowly, and let C be a randomly chosen

configuration from CN,m. Let B ′
n,n ∈ B′(n, m) be the bipartite multigraph associated with C, and Bn,n ∈ B(n, M) be the

simple bipartite graph determined by the support of B ′
n,n. Lemma 8 implies M=mq+op(mq), where q=M/(M+n−1).

Let p = M/N and consider the probability space Bn,p. For a graph G let S = S(G) be the property that G has a
connected component of size at least �|G|, where �=q/4. Define � > ln 16 by �=1− (ln 16)/� and let p′ =�/n. Then
Result 11 implies that almost every graph in Bn,p′ has S. Since almost surely p ∼ mq/N ∼ (�/n) e−�/n > p′, and S
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is an increasing property, almost every graph in Bn,p has S. Every increasing property is also convex. Thus Theorem 6
assures that almost every graph in B(n, M) has S. Then Theorem 9 implies that almost every graph in B′(n, m) has S.
Let H be such a connected component of B ′

n,n of size at least �2n. According to Lemma 10 H is almost surely a police
component. Finally, let HC be the corresponding connected component of the citizen subgraph GC of the configuration
C. Since HC is a police component, Claim 5 implies that C is solvable. This finishes the proof. �

9. Future research

Consider the graph Kd
n =Kd−1

n �Kn, and the sequenceKd ={Kd
1 , . . . , Kd

n , . . .}. If Conjecture 3 is true then induction
would show that �Kd = �(

√
N) for all d. On the surface such a result might be surprising, considering the sparcity of

the graphs (size nd , degree d(n − 1)). However, its low diameter and high structure make such a result believable.
Another interesting test for Conjecture 3 is the sequence of n-dimensional cubes Q = {Q1, . . . , Qn, . . .}, where

Qn = Qn−1�Q1, and Q1 is the path on two vertices. Because Q2 is a subsequence of Q, we must have �Q2 = �Q.
Therefore, if �Q = �(N�f (N)) for some function f (N), one can see that f (N) must be submultiplicative; i.e.
f (xy)�f (x)f (y) must hold. The best result to date is that �Q ⊂ �(N1−) ∩ O(N/ lg N) for all  > 0 (see [14]).
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