2,435 research outputs found

    Superconducting d-wave junctions: The disappearance of the odd ac components

    Full text link
    We study voltage-biased superconducting planar d-wave junctions for arbitrary transmission and arbitrary orientation of the order parameters of the superconductors. For a certain orientation of the superconductors the odd ac components disappear, resulting in a doubling of the Josephson frequency. We study the sensitivity of this disappearance to orientation and compare with experiments on grain boundary junctions. We also discuss the possibility of a current flow parallel to the junction.Comment: 5 pages, 3 figure

    Orbital magnetization and its effects in spin-chiral ferromagnetic Kagome lattice

    Full text link
    Recently, Berry phase in the semiclassical dynamical of Bloch electrons has been found to make a correction to the phase-space density of states and a general multi-band formula for finite-temperature orbital magnetization has been given [Phys. Rev. Lett. \textbf{97}, 026603 (2006)], where the orbital magnetization M\mathcal{M} consists of two parts, i.e., the conventional part McM_{c} and the Berry-phase correction part MΩM_{\Omega}. Using this general formula, we theoretically investigate the orbital magnetization and its effects on thermoelectric transport and magnetic susceptibility properties of the two-dimensional \textit{kagom\'{e}} lattice with spin anisotropies included. The study in this paper is highly interesting by the occurrence of nonzero Chern number in the lattice. The spin chirality parameter ϕ\phi (see text) results in profound effects on the orbital magnetization properties. It is found that the two parts in orbital magnetization opposite each other. In particular, we show that McM_{c} and MΩM_{\Omega} yield the paramagnetic and diamagnetic responses, respectively. It is further shown that the orbital magnetization displays fully different behavior in the metallic and insulating regions, which is due to the different roles McM_{c} and MΩM_{\Omega} play in these two regions. The anomalous Nernst conductivity is also calculated, which displays a peak-valley structure as a function of the electron Fermi energy.Comment: 9 pages, 7 figure

    Ab initio calculation of the anomalous Hall conductivity by Wannier interpolation

    Full text link
    The intrinsic anomalous Hall effect in ferromagnets depends on subtle spin-orbit-induced effects in the electronic structure, and recent ab-initio studies found that it was necessary to sample the Brillouin zone at millions of k-points to converge the calculation. We present an efficient first-principles approach for computing the anomalous Hall conductivity. We start out by performing a conventional electronic-structure calculation including spin-orbit coupling on a uniform and relatively coarse k-point mesh. From the resulting Bloch states, maximally-localized Wannier functions are constructed which reproduce the ab-initio states up to the Fermi level. The Hamiltonian and position-operator matrix elements, needed to represent the energy bands and Berry curvatures, are then set up between the Wannier orbitals. This completes the first stage of the calculation, whereby the low-energy ab-initio problem is transformed into an effective tight-binding form. The second stage only involves Fourier transforms and unitary transformations of the small matrices set up in the first stage. With these inexpensive operations, the quantities of interest are interpolated onto a dense k-point mesh and used to evaluate the anomalous Hall conductivity as a Brillouin zone integral. The present scheme, which also avoids the cumbersome summation over all unoccupied states in the Kubo formula, is applied to bcc Fe, giving excellent agreement with conventional, less efficient first-principles calculations. Remarkably, we find that more than 99% of the effect can be recovered by keeping a set of terms depending only on the Hamiltonian matrix elements, not on matrix elements of the position operator.Comment: 16 pages, 7 figure

    System for the measurement of ultra-low stray light levels

    Get PDF
    An apparatus is described for measuring the effectiveness of stray light suppression light shields and baffle arrangements used in optical space experiments and large space telescopes. The light shield and baffle arrangement and a telescope model are contained in a vacuum chamber. A source of short, high-powered light energy illuminates portions of the light shield and baffle arrangement and reflects a portion of same to a photomultiplier tube by virtue of multipath scattering. The resulting signal is transferred to time-channel electronics timed by the firing of the high energy light source allowing time discrimination of the signal thereby enabling the light scattered and suppressed by the model to be distinguished from the walls and holders around the apparatus

    A precursor state to unconventional superconductivity in CeIrIn5{_5}

    Full text link
    We present sensitive measurements of the Hall effect and magnetoresistance in CeIrIn5{_5} down to temperatures of 50 mK and magnetic fields up to 15 T. The presence of a low temperature coherent Kondo state is established. Deviations from Kohler's rule and a quadratic temperature dependence of the cotangent of the Hall angle are reminiscent of properties observed in the high temperature superconducting cuprates. The most striking observation pertains to the presence of a \textit{precursor} state--characterized by a change in the Hall mobility--that appears to precede the superconductivity in this material, in similarity to the pseudogap in the cuprate high TcT_c superconductors.Comment: 4 figure

    Nano granular metallic Fe - oxygen deficient TiO2−ή_{2-\delta} composite films: A room temperature, highly carrier polarized magnetic semiconductor

    Full text link
    Nano granular metallic iron (Fe) and titanium dioxide (TiO2−ή_{2-\delta}) were co-deposited on (100) lanthanum aluminate (LaAlO3_3) substrates in a low oxygen chamber pressure using a pulsed laser ablation deposition (PLD) technique. The co-deposition of Fe and TiO2_2 resulted in ≈\approx 10 nm metallic Fe spherical grains suspended within a TiO2−ή_{2-\delta} matrix. The films show ferromagnetic behavior with a saturation magnetization of 3100 Gauss at room temperature. Our estimate of the saturation magnetization based on the size and distribution of the Fe spheres agreed well with the measured value. The film composite structure was characterized as p-type magnetic semiconductor at 300 K with a carrier density of the order of 1022/cm3 10^{22} /{\rm cm^3}. The hole carriers were excited at the interface between the nano granular Fe and TiO2−ή_{2-\delta} matrix similar to holes excited in the metal/n-type semiconductor interface commonly observed in Metal-Oxide-Semiconductor (MOS) devices. From the large anomalous Hall effect directly observed in these films it follows that the holes at the interface were strongly spin polarized. Structure and magneto transport properties suggested that these PLD films have potential nano spintronics applications.Comment: 6 pages in Latex including 8 figure

    Flow Equations for N Point Functions and Bound States

    Full text link
    We discuss the exact renormalization group or flow equation for the effective action and its decomposition into one particle irreducible N point functions. With the help of a truncated flow equation for the four point function we study the bound state problem for scalar fields. A combination of analytic and numerical methods is proposed, which is applied to the Wick-Cutkosky model and a QCD-motivated interaction. We present results for the bound state masses and the Bethe-Salpeter wave function. (Figs. 1-4 attached as separate uuencoded post-script files.)Comment: 17 pages, HD-THEP-93-3

    Towards a better understanding of the dynamic role of the distance language learner: learner perceptions of personality, motivation, roles, and approaches

    Get PDF
    This study investigated the experience of learners enrolled on an Open University (UK) French course, and included personality factors, motivation, and tutor and student roles. The data gathered via multiple elicitation methods gave useful insights into issues of special relevance to distance language education, in particular the lack of fit between an inherently social discipline such as language learning and the distance context, whose main characterizing feature is remoteness from others. Motivation was seen to play a crucial role in success, along with tutor feedback, and personal responsibility for learning. Increased confidence and self?regulation were beneficial outcomes of the process of learning at a distance, and numerous suggestions for learning approaches based on personal experience were offered for language learners new to distance learning. The study concluded that the task for distance practitioners is to build on the insights shown by learners themselves, in order to target support where it is most needed

    ac Josephson effect in superconducting d-wave junctions

    Full text link
    We study theoretically the ac Josephson effect in superconducting planar d-wave junctions. The insulating barrier assumed to be present between the two superconductors may have arbitrary strength. Many properties of this system depend on the orientation of the d-wave superconductor: we calculate the ac components of the Josephson current. In some arrangements there is substantial negative differential conductance due to the presence of mid-gap states. We study how robust these features are to finite temperature and also comment on how the calculated current-voltage curves compare with experiments. For some other configurations (for small barrier strength) we find zero-bias conductance peaks due to multiple Andreev reflections through midgap states. Moreover, the odd ac components are strongly suppressed and even absent in some arrangements. This absence will lead to a doubling of the Josephson frequency. All these features are due to the d-wave order parameter changing sign when rotated 90∘90^{\circ}. Recently, there have been several theoretical reports on parallel current in the d-wave case for both the stationary Josephson junction and for the normal metal-superconductor junction. Also in our case there may appear current density parallel to the junction, and we present a few examples when this takes place. Finally, we give a fairly complete account of the method used and also discuss how numerical calculations should be performed in order to produce current-voltage curves
    • 

    corecore